skip to main content


Title: Atmospheric Dust Inputs, Iron Cycling, and Biogeochemical Connections in the South Pacific Ocean From Thorium Isotopes
Abstract

One of the primary sources of micronutrients to the sea surface in remote ocean regions is the deposition of atmospheric dust. Geographic patterns in biogeochemical processes such as primary production and nitrogen fixation that require micronutrients like iron (Fe) are modulated in part by the spatial distribution of dust supply. Global models of dust deposition rates are poorly calibrated in the open ocean, owing to the difficulty of determining dust fluxes in sparsely sampled regions. We present new estimates of dust and Fe input rates from measurements of dissolved and particulate thorium isotopes230Th and232Th on theFS SonneSO245 section (GEOTRACES process study GPpr09) in the South Pacific. We first discuss high‐resolution upper water column profiles of Th isotopes and the implications for the systematics of dust flux reconstructions from seawater Th measurements. We find dust fluxes in the center of the highly oligotrophic South Pacific Gyre that are the lowest of any mean annual dust input rates measured in the global oceans, but that are 1–2 orders of magnitude higher than those estimated by global dust models. We also determine dust‐borne Fe fluxes and reassess the importance of individual Fe sources to the surface South Pacific Gyre, finding that dust dissolution, not vertical or lateral diffusion, is the primary Fe source. Finally, we combine our estimates of Fe flux in dust with previously published cellular and enzymatic quotas to determine theoretical upper limits on annual average nitrogen fixation rates for a given Fe deposition rate.

 
more » « less
NSF-PAR ID:
10363229
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Global Biogeochemical Cycles
Volume:
34
Issue:
9
ISSN:
0886-6236
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    North African dust is known to be deposited in the Gulf of Mexico, but its deposition rate and associated supply of lithogenic dissolved metals, such as the abiotic metal thorium or the micronutrient metal iron, have not been well‐quantified.232Th is an isotope with similar sources as iron and its input can be quantified using radiogenic230Th. By comparing dissolved232Th fluxes at three sites in the northern Gulf of Mexico with upwind sites in the North Atlantic, we place an upper bound on North African dust contributions to232Th and Fe in the Gulf of Mexico, which is about 30% of the total input. Precision on this bound is hindered by uncertainty in the relative rates of dust deposition in the North Atlantic and the northern Gulf of Mexico. Based on available radium data, shelf sources, including rivers, submarine groundwater discharge, and benthic sedimentary releases are likely as important if not more important than dust in the budget of lithogenic metals in the Gulf of Mexico. In other words, it is likely there is no one dominant source of Th and Fe in the Gulf of Mexico. Finally, our estimated Fe input in the northern Gulf of Mexico implies an Fe residence time of less than 6 months, similar to that in the North Atlantic despite significantly higher supply rates in the Gulf of Mexico.

     
    more » « less
  2. The spatial distribution of marine di-nitrogen (N2) fixation informs our understanding of the sensitivities of this process as well as the potential for this new nitrogen (N) source to drive export production, influencing the global carbon (C) cycle and climate. Using geochemically-derived δ15N budgets, we quantified rates of N2fixation and its importance for supporting export production at stations sampled near the southwest Pacific Tonga-Kermadec Arc. Recent observations indicate that shallow (<300 m) hydrothermal vents located along the arc provide significant dissolved iron to the euphotic zone, stimulating N2fixation. Here we compare measurements of water column δ15NNO3+NO2with sinking particulate δ15N collected by short-term sediment traps deployed at 170 m and 270 m at stations in close proximity to subsurface hydrothermal activity, and the δ15N of N2fixation. Results from the δ15N budgets yield high geochemically-based N2fixation rates (282 to 638 µmol N m-2d-1) at stations impacted by hydrothermal activity, supporting 64 to 92% of export production in late spring. These results are consistent with contemporaneous15N2uptake rate estimates and molecular work describing highTrichodesmiumspp. and other diazotroph abundances associated with elevated N2fixation rates. Further, the δ15N of sinking particulate N collected at 1000 m over an annual cycle revealed sinking fluxes peaked in the summer and coincided with the lowest δ15N, while lower winter sinking fluxes had the highest δ15N, indicating isotopically distinct N sources supporting export seasonally, and aligning with observations from most other δ15N budgets in oligotrophic regions. Consequently, the significant regional N2fixation input to the late spring/summer Western Tropical South Pacific results in the accumulation of low-δ15NNO3+NO2in the upper thermocline that works to lower the elevated δ15NNO3+NO2generated in the oxygen deficient zones in the Eastern Tropical South Pacific.

     
    more » « less
  3. Abstract

    Biological dinitrogen fixation is the major source of new nitrogen to marine systems and thus essential to the ocean’s biological pump. Constraining the distribution and global rate of dinitrogen fixation has proven challenging owing largely to uncertainty surrounding the controls thereon. Existing South Atlantic dinitrogen fixation rate estimates vary five-fold, with models attributing most dinitrogen fixation to the western basin. From hydrographic properties and nitrate isotope ratios, we show that the Angola Gyre in the eastern tropical South Atlantic supports the fixation of 1.4–5.4 Tg N.a−1, 28-108% of the existing (highly uncertain) estimates for the basin. Our observations contradict model diagnoses, revealing a substantial input of newly-fixed nitrogen to the tropical eastern basin and no dinitrogen fixation west of 7.5˚W. We propose that dinitrogen fixation in the South Atlantic occurs in hotspots controlled by the overlapping biogeography of excess phosphorus relative to nitrogen and bioavailable iron from margin sediments. Similar conditions may promote dinitrogen fixation in analogous ocean regions. Our analysis suggests that local iron availability causes the phosphorus-driven coupling of oceanic dinitrogen fixation to nitrogen loss to vary on a regional basis.

     
    more » « less
  4. Abstract

    Sinking particles strongly regulate the distribution of reactive chemical substances in the ocean, including particulate organic carbon and other elements (e.g., P, Cd, Mn, Cu, Co, Fe, Al, and232Th). Yet, the sinking fluxes of trace elements have not been well described in the global ocean. The U.S. GEOTRACES campaign in the North Atlantic (GA03) offers the first data set in which the sinking flux of carbon and trace elements can be derived using four different radionuclide pairs (238U:234Th;210Pb:210Po;228Ra:228Th; and234U:230Th) at stations co‐located with sediment trap fluxes for comparison. Particulate organic carbon, particulate P, and particulate Cd fluxes all decrease sharply with depth below the euphotic zone. Particulate Mn, Cu, and Co flux profiles display mixed behavior, some cases reflecting biotic remineralization, and other cases showing increased flux with depth. The latter may be related to either lateral input of lithogenic material or increased scavenging onto particles. Lastly, particulate Fe fluxes resemble fluxes of Al and232Th, which all have increasing flux with depth, indicating a dominance of lithogenic flux at depth by resuspended sediment transported laterally to the study site. In comparing flux estimates derived using different isotope pairs, differences result from different timescales of integration and particle size fractionation effects. The range in flux estimates produced by different methods provides a robust constraint on the true removal fluxes, taking into consideration the independent uncertainties associated with each method. These estimates will be valuable targets for biogeochemical modeling and may also offer insight into particle sinking processes.

     
    more » « less
  5. Abstract

    Distinctively‐light isotopic signatures associated with Fe released from anthropogenic activity have been used to trace basin‐scale impacts. However, this approach is complicated by the way Fe cycle processes modulate oceanic dissolved Fe (dFe) signatures (δ56Fediss) post deposition. Here we include dust, wildfire, and anthropogenic aerosol Fe deposition in a global ocean biogeochemical model with active Fe isotope cycling, to quantify how anthropogenic Fe impacts surface ocean dFe and δ56Fediss. Using the North Pacific as a natural laboratory, the response of dFe, δ56Fediss, and primary productivity are spatially and seasonally variable and do not simply follow the footprint of atmospheric deposition. Instead, the effect of anthropogenic Fe is regulated by the biogeochemical regime, specifically the degree of Fe limitation and rates of primary production. Overall, we find that while δ56Fedissdoes trace anthropogenic input, the response is muted by fractionation during phytoplankton uptake, but amplified by other isotopically‐light Fe sources.

     
    more » « less