skip to main content


Title: Geographic variation in responses of kelp forest communities of the California Current to recent climatic changes
Abstract

The changing global climate is having profound effects on coastal marine ecosystems around the world. Structure, functioning, and resilience, however, can vary geographically, depending on species composition, local oceanographic forcing, and other pressures from human activities and use. Understanding ecological responses to environmental change and predicting changes in the structure and functioning of whole ecosystems require large‐scale, long‐term studies, yet most studies trade spatial extent for temporal duration. We address this shortfall by integrating multiple long‐term kelp forest monitoring datasets to evaluate biogeographic patterns and rates of change of key functional groups (FG) along the west coast of North America. Analysis of data from 469 sites spanning Alaska, USA, to Baja California, Mexico, and 373 species (assigned to 18 FG) reveals regional variation in responses to both long‐term (2006–2016) change and a recent marine heatwave (2014–2016) associated with two atmospheric and oceanographic anomalies, the “Blob” and extreme El Niño Southern Oscillation (ENSO). Canopy‐forming kelps appeared most sensitive to warming throughout their range. Other FGs varied in their responses among trophic levels, ecoregions, and in their sensitivity to heatwaves. Changes in community structure were most evident within the southern and northern California ecoregions, while communities in the center of the range were more resilient. We report a poleward shift in abundance of some key FGs. These results reveal major, ongoing region‐wide changes in productive coastal marine ecosystems in response to large‐scale climate variability, and the potential loss of foundation species. In particular, our results suggest that coastal communities that are dependent on kelp forests will be more impacted in the southern portion of the California Current region, highlighting the urgency of implementing adaptive strategies to sustain livelihoods and ensure food security. The results also highlight the value of multiregional integration and coordination of monitoring programs for improving our understanding of marine ecosystems, with the goal of informing policy and resource management in the future.

 
more » « less
Award ID(s):
1736830 1538582
NSF-PAR ID:
10363244
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Global Change Biology
Volume:
26
Issue:
11
ISSN:
1354-1013
Page Range / eLocation ID:
p. 6457-6473
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Globally, anthropogenic pressures are reducing the abundances of marine species and altering ecosystems through modification of trophic interactions. Yet, consumer declines also disrupt important bottom‐up processes, like nutrient recycling, which are critical for ecosystem functioning. Consumer‐mediated nutrient dynamics (CND) is now considered a major biogeochemical component of most ecosystems, but lacking long‐term studies, it is difficult to predict how CND will respond to accelerating disturbances in the wake of global change. To aid such predictions, we coupled empirical ammonium excretion rates with an 18‐year time series of the standing biomass of common benthic macroinvertebrates in southern California kelp forests. This time series of excretion rates encompassed an extended period of extreme ocean warming, disease outbreaks, and the abolishment of fishing at two of our study sites, allowing us to assess kelp forest CND across a wide range of environmental conditions. At their peak, reef invertebrates supplied an average of 18.3 ± 3.0 µmol NH4+ m−2 hr−1to kelp forests when sea stars were regionally abundant, but dropped to 3.5 ± 1.0 µmol NH4+ m−2 hr−1following their mass mortality due to disease during a prolonged period of extreme warming. However, a coincident increase in the abundance of the California spiny lobster,Palinurus interupptus(Randall, 1840), likely in response to both reduced fishing and a warmer ocean, compensated for much of the recycled ammonium lost to sea star mortality. Both lobsters and sea stars are widely recognized as key predators that can profoundly influence community structure in benthic marine systems. Our study is the first to demonstrate their importance in nutrient cycling, thus expanding their roles in the ecosystem. Climate change is increasing the frequency and severity of warming events, and rising human populations are intensifying fishing pressure in coastal ecosystems worldwide. Our study documents how these projected global changes can drive regime shifts in CND and fundamentally alter a critical ecosystem function.

     
    more » « less
  2. Abstract

    Ocean warming has both direct physiological and indirect ecological consequences for marine organisms. Sessile animals may be particularly vulnerable to anomalous warming given constraints in food acquisition and reproduction imposed by sessility. In temperate reef ecosystems, sessile suspension feeding invertebrates provide food for an array of mobile species and act as a critical trophic link between the plankton and the benthos. Using 14 years of seasonal benthic community data across five coastal reefs, we evaluated how communities of sessile invertebrates in southern California kelp forests responded to the “Blob”, a period of anomalously high temperatures and low phytoplankton production. We show that this event had prolonged consequences for kelp forest ecosystems. Changes to community structure, including species invasions, have persisted six years post-Blob, suggesting that a climate-driven shift in California kelp forests is underway.

     
    more » « less
  3. Abstract

    Understanding species’ responses to upwelling may be especially important in light of ongoing environmental change. Upwelling frequency and intensity are expected to increase in the future, while ocean acidification and deoxygenation are expected to decrease the pH and dissolved oxygen (DO) of upwelled waters. However, the acute effects of a single upwelling event and the integrated effects of multiple upwelling events on marine organisms are poorly understood. Here, we use in situ measurements of pH, temperature, and DO to characterize the covariance of environmental conditions within upwelling‐dominated kelp forest ecosystems. We then test the effects of acute (0–3 days) and chronic (1–3 months) upwelling on the performance of two species of kelp forest grazers, the echinoderm,Mesocentrotus franciscanus, and the gastropod,Promartynia pulligo. We exposed organisms to static conditions in a regression design to determine the shape of the relationship between upwelling and performance and provide insights into the potential effects in a variable environment. We found that respiration, grazing, growth, and net calcification decline linearly with increasing upwelling intensity forM.francicanusover both acute and chronic timescales.Promartynia pulligoexhibited decreased respiration, grazing, and net calcification with increased upwelling intensity after chronic exposure, but we did not detect an effect over acute timescales or on growth after chronic exposure. Given the highly correlated nature of pH, temperature, and DO in the California Current, our results suggest the relationship between upwelling intensity and growth in the 3‐month trial could potentially be used to estimate growth integrated over long‐term dynamic oceanographic conditions forM.franciscanus. Together, these results indicate current exposure to upwelling may reduce species performance and predicted future increases in upwelling frequency and intensity could affect ecosystem function by modifying the ecological roles of key species.

     
    more » « less
  4. Abstract

    A critical tool in assessing ecosystem change is the analysis of long‐term data sets, yet such information is generally sparse and often unavailable for many habitats. Kelp forests are an example of rapidly changing ecosystems that are in most cases data poor. Because kelp forests are highly dynamic and have high intrinsic interannual variability, understanding how regional‐scale drivers are driving kelp populations—and particularly how kelp populations are responding to climate change—requires long‐term data sets. However, much of the work on kelp responses to climate change has focused on just a few, relatively long‐lived, perennial, canopy‐forming species. To understand how kelp populations with different life history traits are responding to climate‐related variability, we leverage 35 yr of Landsat satellite imagery to track the population size of an annual, ruderal kelp,Nereocystis luetkeana, across Oregon. We found high levels of interannual variability inNereocystiscanopy area and varying population trajectories over the last 35 yr. Surprisingly, OregonNereocystispopulation sizes were unresponsive to a 2014 marine heat wave accompanied by increases in urchin densities that decimated northern CaliforniaNereocystispopulations. Some OregonNereocystis populations have even increased in area relative to pre‐2014 levels. Analysis of environmental drivers found thatNereocystispopulation size was negatively correlated with estimated nitrate levels and positively correlated with winter wave height. This pattern is the inverse of the predicted relationship based on extensive prior work on the perennial kelpMacrocystis pyriferaand may be related to the annual life cycle ofNereocystis. This article demonstrates (1) the value of novel remote sensing tools to create long‐term data sets that may challenge our understanding of nearshore marine species and (2) the need to incorporate life history traits into our theory of how climate change will shape the ocean of the future.

     
    more » « less
  5. Pérez-Matus, Alejandro (Ed.)

    Giant kelp and bull kelp forests are increasingly at risk from marine heatwave events, herbivore outbreaks, and the loss or alterations in the behavior of key herbivore predators. The dynamic floating canopy of these kelps is well-suited to study via satellite imagery, which provides high temporal and spatial resolution data of floating kelp canopy across the western United States and Mexico. However, the size and complexity of the satellite image dataset has made ecological analysis difficult for scientists and managers. To increase accessibility of this rich dataset, we created Kelpwatch, a web-based visualization and analysis tool. This tool allows researchers and managers to quantify kelp forest change in response to disturbances, assess historical trends, and allow for effective and actionable kelp forest management. Here, we demonstrate how Kelpwatch can be used to analyze long-term trends in kelp canopy across regions, quantify spatial variability in the response to and recovery from the 2014 to 2016 marine heatwave events, and provide a local analysis of kelp canopy status around the Monterey Peninsula, California. We found that 18.6% of regional sites displayed a significant trend in kelp canopy area over the past 38 years and that there was a latitudinal response to heatwave events for each kelp species. The recovery from heatwave events was more variable across space, with some local areas like Bahía Tortugas in Baja California Sur showing high recovery while kelp canopies around the Monterey Peninsula continued a slow decline and patchy recovery compared to the rest of the Central California region. Kelpwatch provides near real time spatial data and analysis support and makes complex earth observation data actionable for scientists and managers, which can help identify areas for research, monitoring, and management efforts.

     
    more » « less