skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The Environments of CO Cores and Star Formation in the Dwarf Irregular Galaxy WLM
Abstract The low metallicities of dwarf irregular galaxies (dIrr) greatly influence the formation and structure of molecular clouds. These clouds, which consist primarily of H2, are typically traced by CO, but low-metallicity galaxies are found to have little CO despite ongoing star formation. In order to probe the conditions necessary for CO core formation in dwarf galaxies, we have used the catalog of Rubio et al. for CO cores in WLM, a Local Group dwarf with an oxygen abundance that is 13% of solar. Here we aim to characterize the galactic environments in which these 57 CO cores formed. We grouped the cores together based on proximity to each other and strong FUV emission, examining properties of the star-forming region enveloping the cores and the surrounding environment where the cores formed. We find that high Hisurface density does not necessarily correspond to higher total CO mass, but regions with higher CO mass have higher Hisurface densities. We also find the cores in star-forming regions spanning a wide range of ages show no correlation between age and CO core mass, suggesting that the small size of the cores is not due to fragmentation of the clouds with age. The presence of CO cores in a variety of different local environments, along with the similar properties between star-forming regions with and without CO cores, leads us to conclude that there are no obvious environmental characteristics that drive the formation of these CO cores.  more » « less
Award ID(s):
1907492
PAR ID:
10363245
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astronomical Journal
Volume:
163
Issue:
3
ISSN:
0004-6256
Format(s):
Medium: X Size: Article No. 141
Size(s):
Article No. 141
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Measuring the properties of the cold neutral medium (CNM) in low-metallicity galaxies provides insights into heating and cooling mechanisms in early Universe-like environments. We report detections of two localized atomic neutral hydrogen (Hi) absorption features in NGC 6822, a low-metallicity (0.2Z) dwarf galaxy in the Local Group. These are the first unambiguous CNM detections in a low-metallicity dwarf galaxy outside the Magellanic Clouds. The Local GroupL-band Survey (LGLBS) enabled these detections, due to its high spatial (15 pc for Hiemission) and spectral (0.4 km s−1) resolution. We introduce LGLBS and describe a custom pipeline for searching for Hiabsorption at high angular resolution and extracting associated Hiemission. A detailed Gaussian decomposition and radiative transfer analysis of the NGC 6822 detections reveals five CNM components, with key properties: a mean spin temperature of 32 ± 6 K, a mean CNM column density of 3.1 × 1020cm−2, and CNM mass fractions of 0.33 and 0.12 for the two sightlines. Stacking nondetections does not reveal low-level signals below our median optical depth sensitivity of 0.05. One detection intercepts a star-forming region, with the Hiabsorption profile encompassing the CO (2−1) emission, indicating coincident molecular gas and a depression in high-resolution Hiemission. We also analyze a nearby sightline with deep, narrow Hiself-absorption dips, where the background warm neutral medium is attenuated by intervening CNM. The association of CNM, CO, and Hαemissions suggests a close link between the colder, denser Hiphase and star formation in NGC 6822. 
    more » « less
  2. Abstract We are entering an era in which we will be able to detect and characterize hundreds of dwarf galaxies within the Local Volume. It is already known that a strong dichotomy exists in the gas content and star formation properties of field dwarf galaxies versus satellite dwarfs of larger galaxies. In this work, we study the more subtle differences that may be detectable in galaxies as a function of distance from a massive galaxy, such as the Milky Way. We compare smoothed particle hydrodynamic simulations of dwarf galaxies formed in a Local Volume-like environment (several megaparsecs away from a massive galaxy) to those formed nearer to Milky Way–mass halos. We find that the impact of environment on dwarf galaxies extends even beyond the immediate region surrounding Milky Way–mass halos. Even before being accreted as satellites, dwarf galaxies near a Milky Way–mass halo tend to have higher stellar masses for their halo mass than more isolated galaxies. Dwarf galaxies in high-density environments also tend to grow faster and form their stars earlier. We show observational predictions that demonstrate how these trends manifest in lower quenching rates, higher Hifractions, and bluer colors for more isolated dwarf galaxies. 
    more » « less
  3. Abstract We present observations of the dwarf galaxies GALFA Dw3 and GALFA Dw4 with the Advanced Camera for Surveys on the Hubble Space Telescope. These galaxies were initially discovered as optical counterparts to compact Hiclouds in the GALFA survey. Both objects resolve into stellar populations which display old red giant branch (RGB), younger helium-burning, and massive main sequence stars. We use the tip of the RGB method to determine the distance to each galaxy, finding distances of 7.61 0.29 + 0.28 Mpc and 3.10 0.17 + 0.16 Mpc, respectively. With these distances we show that both galaxies are extremely isolated, with no other confirmed objects within ∼1.5 Mpc of either dwarf. GALFA Dw4 is also found to be unusually compact for a galaxy of its luminosity. GALFA Dw3 and Dw4 contain Hiiregions with young star clusters and an overall irregular morphology; they show evidence of ongoing star formation through both ultraviolet and Hαobservations and are therefore classified as dwarf irregulars (dIrrs). The star formation histories of these two dwarfs show distinct differences: Dw3 shows signs of a recently ceased episode of active star formation across the entire dwarf, while Dw4 shows some evidence for current star formation in spatially limited Hiiregions. Compact Hisources offer a promising method for identifying isolated field dwarfs in the Local Volume, including GALFA Dw3 and Dw4, with the potential to shed light on the driving mechanisms of dwarf galaxy formation and evolution. 
    more » « less
  4. The mode of star formation that results in the formation of globular clusters and young massive clusters is difficult to constrain through observations. We present models of massive star cluster formation using the TORCHframework, which uses the Astrophysical MUltipurpose Software Environment (AMUSE) to couple distinct multi-physics codes that handle star formation, stellar evolution and dynamics, radiative transfer, and magnetohydrodynamics. We upgraded TORCHby implementing the N-body code PETAR, thereby enabling TORCHto handle massive clusters forming from 106Mclouds with ≥105individual stars. We present results from TORCHsimulations of star clusters forming from 104,  105, and 106Mturbulent spherical gas clouds (named M4, M5, M6) of radiusR= 11.7 pc. We find that star formation is highly efficient and becomes more so at a higher cloud mass and surface density. For M4, M5, and M6 with initial surface densities 2.325 × 101,2,3Mpc−2, after a free-fall time oftff= 6.7,2.1,0.67 Myr, we find that ∼30%, 40%, and 60% of the cloud mass has formed into stars, respectively. The end of simulation-integrated star formation efficiencies for M4, M5, and M6 areϵ = M/Mcloud = 36%, 65%, and 85%. Observations of nearby clusters similar in mass and size to M4 have instantaneous star formation efficiencies ofϵinst ≤ 30%, which is slightly lower than the integrated star formation efficiency of M4. The M5 and M6 models represent a different regime of cluster formation that is more appropriate for the conditions in starburst galaxies and gas-rich galaxies at high redshift, and that leads to a significantly higher efficiency of star formation. We argue that young massive clusters build up through short efficient bursts of star formation in regions that are sufficiently dense (Σ ≥ 102Mpc−2) and massive (Mcloud≥ 105M). In such environments, stellar feedback from winds and radiation is not strong enough to counteract the gravity from gas and stars until a majority of the gas has formed into stars. 
    more » « less
  5. Abstract We use a sample of 73 simulated satellite and central dwarf galaxies spanning a stellar mass range of 105.3–109.1Mto investigate the origin of their stellar age gradients. We find that dwarf galaxies often form their stars “inside-out,” i.e., the stars form at successively larger radii over time. However, the oldest stars get reshuffled beyond the star-forming radius by fluctuations in the gravitational potential well caused by stellar feedback (the same mechanisms that cause dwarfs to form dark matter cores). The result is that many dwarfs appear to have an “outside-in” age gradient atz= 0, with younger stellar populations more centrally concentrated. However, for the reshuffled galaxies with the most extended star formation, young stars can form out to the large radii to which the old stars have been reshuffled, erasing the age gradient. We find that major mergers do not play a significant role in setting the age gradients of dwarfs. We find similar age gradient trends in satellites and field dwarfs, suggesting that environment plays only a minor role, if any. Finally, we find that the age gradient trends are imprinted on the galaxies at later times, suggesting that the stellar reshuffling dominates after the galaxies have formed 50% of their stellar mass. The later reshuffling is at odds with results from thefire-2simulations. Hence, age gradients offer a test of current star formation and feedback models that can be probed via observations of resolved stellar populations. 
    more » « less