skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Picturing the future of food
Abstract High‐throughput phenotyping (HTP) has emerged as one of the most exciting and rapidly evolving spaces within plant science. The successful application of phenotyping technologies will facilitate increases in agricultural productivity. High‐throughput phenotyping research is interdisciplinary and may involve biologists, engineers, mathematicians, physicists, and computer scientists. Here we describe the need for additional interest in HTP and offer a primer for those looking to engage with the HTP community. This is a high‐level overview of HTP technologies and analysis methodologies, which highlights recent progress in applying HTP to foundational research, identification of biotic and abiotic stress, breeding and crop improvement, and commercial and production processes. We also point to the opportunities and challenges associated with incorporating HTP across food production to sustainably meet the current and future global food supply requirements.  more » « less
Award ID(s):
1921724
PAR ID:
10363258
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
The Plant Phenome Journal
Volume:
4
Issue:
1
ISSN:
2578-2703
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Global crop production faces increasing threats from the rise in frequency, duration, and intensity of drought and heat stress events due to climate change. Most staple food crops, including wheat, rice, soybean, and corn that provide over half of the world's caloric intake, are not well-adapted to withstand heat or drought. Efforts to breed or engineer stress-tolerant crops have had limited success due to the complexity of tolerance mechanisms and the variability of agricultural environments. Effective solutions require a shift towards fundamental research that incorporates realistic agricultural settings and focuses on practical outcomes for farmers. This review explores the genetic and environmental factors affecting heat and drought tolerance in major crops, examines the physiological and molecular mechanisms underlying these stress responses, and evaluates the limitations of current breeding programs and models. It also discusses emerging technologies and approaches that could enhance crop resilience, such as synthetic biology, advanced breeding techniques, and high-throughput phenotyping. Finally, this review emphasizes the need for interdisciplinary research and collaboration with stakeholders to translate fundamental research into practical agricultural solutions. 
    more » « less
  2. Abstract Soybean (Glycine max[L.] Merr.) production is susceptible to biotic and abiotic stresses, exacerbated by extreme weather events. Water limiting stress, that is, drought, emerges as a significant risk for soybean production, underscoring the need for advancements in stress monitoring for crop breeding and production. This project combined multi‐modal information to identify the most effective and efficient automated methods to study drought response. We investigated a set of diverse soybean accessions using multiple sensors in a time series high‐throughput phenotyping manner to: (1) develop a pipeline for rapid classification of soybean drought stress symptoms, and (2) investigate methods for early detection of drought stress. We utilized high‐throughput time‐series phenotyping using unmanned aerial vehicles and sensors in conjunction with machine learning analytics, which offered a swift and efficient means of phenotyping. The visible bands were most effective in classifying the severity of canopy wilting stress after symptom emergence. Non‐visual bands in the near‐infrared region and short‐wave infrared region contribute to the differentiation of susceptible and tolerant soybean accessions prior to visual symptom development. We report pre‐visual detection of soybean wilting using a combination of different vegetation indices and spectral bands, especially in the red‐edge. These results can contribute to early stress detection methodologies and rapid classification of drought responses for breeding and production applications. 
    more » « less
  3. Abstract BackgroundMaize (Zea mays ssp. mays) is 1 of 3 crops, along with rice and wheat, responsible for more than one-half of all calories consumed around the world. Increasing the yield and stress tolerance of these crops is essential to meet the growing need for food. The cost and speed of plant phenotyping are currently the largest constraints on plant breeding efforts. Datasets linking new types of high-throughput phenotyping data collected from plants to the performance of the same genotypes under agronomic conditions across a wide range of environments are essential for developing new statistical approaches and computer vision–based tools. FindingsA set of maize inbreds—primarily recently off patent lines—were phenotyped using a high-throughput platform at University of Nebraska-Lincoln. These lines have been previously subjected to high-density genotyping and scored for a core set of 13 phenotypes in field trials across 13 North American states in 2 years by the Genomes 2 Fields Consortium. A total of 485 GB of image data including RGB, hyperspectral, fluorescence, and thermal infrared photos has been released. ConclusionsCorrelations between image-based measurements and manual measurements demonstrated the feasibility of quantifying variation in plant architecture using image data. However, naive approaches to measuring traits such as biomass can introduce nonrandom measurement errors confounded with genotype variation. Analysis of hyperspectral image data demonstrated unique signatures from stem tissue. Integrating heritable phenotypes from high-throughput phenotyping data with field data from different environments can reveal previously unknown factors that influence yield plasticity. 
    more » « less
  4. Phenotyping plants is an essential component of any effort to develop new crop varieties. As plant breeders seek to increase crop productivity and produce more food for the future, the amount of phenotype information they require will also increase. Traditional plant phenotyping relying on manual measurement is laborious, time-consuming, error-prone, and costly. Plant phenotyping robots have emerged as a high-throughput technology to measure morphological, chemical and physiological properties of large number of plants. Several robotic systems have been developed to fulfill different phenotyping missions. In particular, robotic phenotyping has the potential to enable efficient monitoring of changes in plant traits over time in both controlled environments and in the field. The operation of these robots can be challenging as a result of the dynamic nature of plants and the agricultural environments. Here we discuss developments in phenotyping robots, and the challenges which have been overcome and others which remain outstanding. In addition, some perspective applications of the phenotyping robots are also presented. We optimistically anticipate that autonomous and robotic systems will make great leaps forward in the next 10 years to advance the plant phenotyping research into a new era. 
    more » « less
  5. Technological advancements now enable the use of flow-through respirometry for rapid, high-throughput metabolic phenotyping, though live-in systems currently do not exist for birds. We designed live-in respirometry chambers for small birds with an Arduino-based electronic system to continuously monitor bird body weight, food intake, and water intake in sync with metabolic data collection. To demonstrate how this system can be implemented, we kept birds in the metabolic phenotypic chambers for 10 days while we progressively lowered the temperature from 25 °C to 5 °C. We used the data to calculate hourly energy expenditure and food/water intake during acute cold acclimation. We provide all plans and code for the live-in chambers, Arduino biomonitoring system, and additional RFID module as a low-cost, DIY alternative to commercially available systems and to enable the use of standard respirometry equipment for metabolic phenotyping in birds. 
    more » « less