We present the average rest-frame spectrum of the final catalog of dusty star-forming galaxies (DSFGs) selected from the South Pole Telescope's SPT-SZ survey and measured with Band 3 of the Atacama Large Millimeter/submillimeter Array. This work builds on the previous average rest-frame spectrum, given in Spilker et al. (2014) for the first 22 sources, and is comprised of a total of 78 sources, normalized by their respective apparent dust masses. The spectrum spans 1.9 <
We compare observations of H
- Publication Date:
- NSF-PAR ID:
- 10363260
- Journal Name:
- The Astrophysical Journal
- Volume:
- 926
- Issue:
- 2
- Page Range or eLocation-ID:
- Article No. 190
- ISSN:
- 0004-637X
- Publisher:
- DOI PREFIX: 10.3847
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract z < 6.9 and covers rest-frame frequencies of 240–800 GHz. Combining this data with low-J CO observations from the Australia Telescope Compact Array, we detect multiple bright line features from12CO, [Ci ], and H2O, as well as fainter molecular transitions from13CO, HCN, HCO+, HNC, CN, H2O+, and CH. We use these detections, along with limits from other molecules, to characterize the typical properties of the interstellar medium (ISM) for these high-redshift DSFGs. We are able to divide the large sample into subsets in order to explore how the average spectrum changes with various galaxy properties, such as effective dust temperature. We find that systems with hotter dust temperatures exhibit differences in the bright12CO emission lines, and contain either warmer and more excited dense gas tracers or larger densemore » -
We present a multiline survey of the interstellar medium (ISM) in two z > 6 quasar host galaxies, PJ231−20 ( z = 6.59) and PJ308−21 ( z = 6.23), and their two companion galaxies. Observations were carried out using the Atacama Large (sub-)Millimeter Array (ALMA). We targeted 11 transitions including atomic fine-structure lines (FSLs) and molecular lines: [NII] 205 μm , [CI] 369 μm , CO ( J up = 7, 10, 15, 16), H 2 O 3 12 − 2 21 , 3 21 − 3 12 , 3 03 − 2 12 , and the OH 163 μm doublet. The underlying far-infrared (FIR) continuum samples the Rayleigh-Jeans tail of the respective dust emission. By combining this information with our earlier ALMA [CII] 158 μm observations, we explored the effects of star formation and black hole feedback on the ISM of the galaxies using the CLOUDY radiative transfer models. We estimated dust masses, spectral indexes, IR luminosities, and star-formation rates from the FIR continuum. The analysis of the FSLs indicates that the [CII] 158 μm and [CI] 369 μm emission arises predominantly from the neutral medium in photodissociation regions (PDRs). We find that line deficits agree with those of local luminous IR galaxies. The CO spectral line energy distributions (SLEDs) reveal significant high- J COmore »
-
Abstract We have complemented existing observations of H
i absorption with new observations of HCO+, C2H, HCN, and HNC absorption from the Atacama Large Millimeter/submillimeter Array and the Northern Extended Millimeter Array in the directions of 20 background radio continuum sources with 4° ≤ ∣b ∣ ≤ 81° to constrain the atomic gas conditions that are suitable for the formation of diffuse molecular gas. We find that these molecular species form along sightlines whereA V ≳ 0.25, consistent with the threshold for the Hi -to-H2transition at solar metallicity. Moreover, we find that molecular gas is associated only with structures that have an Hi optical depth >0.1, a spin temperature <80 K, and a turbulent Mach number ≳ 2. We also identify a broad, faint component to the HCO+absorption in a majority of sightlines. Compared to the velocities where strong, narrow HCO+absorption is observed, the Hi at these velocities has a lower cold neutral medium fraction and negligible CO emission. The relative column densities and linewidths of the different molecular species observed here are similar to those observed in previous experiments over a range of Galactic latitudes, suggesting that gas in the solar neighborhood and gas in the Galactic plane are chemically similar. For a select sample of previouslymore » -
Abstract JWST observations of polycyclic aromatic hydrocarbon (PAH) emission provide some of the deepest and highest resolution views of the cold interstellar medium (ISM) in nearby galaxies. If PAHs are well mixed with the atomic and molecular gas and illuminated by the average diffuse interstellar radiation field, PAH emission may provide an approximately linear, high-resolution, high-sensitivity tracer of diffuse gas surface density. We present a pilot study that explores using PAH emission in this way based on Mid-Infrared Instrument observations of IC 5332, NGC 628, NGC 1365, and NGC 7496 from the Physics at High Angular resolution in Nearby GalaxieS-JWST Treasury. Using scaling relationships calibrated in Leroy et al., scaled F1130W provides 10–40 pc resolution and 3
σ sensitivity of Σgas∼ 2M ⊙pc−2. We characterize the surface densities of structures seen at <7M ⊙pc−2in our targets, where we expect the gas to be Hi -dominated. We highlight the existence of filaments, interarm emission, and holes in the diffuse ISM at these low surface densities. Below ∼10M ⊙pc−2for NGC 628, NGC 1365, and NGC 7496 the gas distribution shows a “Swiss cheese”-like topology due to holes and bubbles pervading the relatively smooth distribution of the diffuse ISM. Comparing to recent galaxy simulations, we observe similar topology formore » -
Abstract We report a NOrthern Extended Millimeter Array (NOEMA) and Atacama Large Millimeter/submillimeter Array search for redshifted CO emission from the galaxies associated with seven high-metallicity ([M/H] ≥ −1.03) damped Ly
α absorbers (DLAs) atz ≈ 1.64–2.51. Our observations yielded one new detection of CO(3–2) emission from a galaxy atz = 2.4604 using NOEMA, associated with thez = 2.4628 DLA toward QSO B0201+365. Including previous searches, our search results in detection rates of CO emission of % and %, respectively, in the fields of DLAs with [M/H] > −0.3 and [M/H] < −0.3. Further, the Hi –selected galaxies associated with five DLAs with [M/H] > −0.3 all have high molecular gas masses, ≳5 × 1010M ⊙. This indicates that the highest-metallicity DLAs atz ≈ 2 are associated with the most massive galaxies. The newly identifiedz ≈ 2.4604 Hi –selected galaxy, DLA0201+365g, has an impact parameter of ≈7 kpc to the QSO sightline, and an implied molecular gas mass of (5.04 ± 0.78) × 1010× (α CO/4.36) × (r 31/0.55)M ⊙. Archival Hubble Space Telescope Wide Field and Planetary Camera 2 imaging covering the rest-frame near-ultraviolet (NUV) and far-ultraviolet (FUV) emission from this galaxy yield nondetections of rest-frame NUV and FUV emission, and a 5σ upper limit of 2.3M ⊙yr−1on the unobscuredmore »