skip to main content

Title: The impact of the first galaxies on cosmic dawn and reionization

The formation of the first galaxies during cosmic dawn and reionization (at redshifts z = 5–30), triggered the last major phase transition of our universe, as hydrogen evolved from cold and neutral to hot and ionized. The 21-cm line of neutral hydrogen will soon allow us to map these cosmic milestones and study the galaxies that drove them. To aid in interpreting these observations, we upgrade the publicly available code 21cmFAST. We introduce a new, flexible parametrization of the additive feedback from: an inhomogeneous, H2-dissociating (Lyman–Werner; LW) background; and dark matter – baryon relative velocities; which recovers results from recent, small-scale hydrodynamical simulations with both effects. We perform a large, ‘best-guess’ simulation as the 2021 installment of the Evolution of 21-cm Structure (EOS) project. This improves the previous release with a galaxy model that reproduces the observed UV luminosity functions (UVLFs), and by including a population of molecular-cooling galaxies. The resulting 21-cm global signal and power spectrum are significantly weaker, primarily due to a more rapid evolution of the star formation rate density required to match the UVLFs. Nevertheless, we forecast high signal-to-noise detections for both HERA and the SKA. We demonstrate how the stellar-to-halo mass relation of the more » unseen, first galaxies can be inferred from the 21-cm evolution. Finally, we show that the spatial modulation of X-ray heating due to relative velocities provides a unique acoustic signature that is detectable at z ≈ 10–15 in our fiducial model. Ours are the first public simulations with joint inhomogeneous LW and relative-velocity feedback across the entire cosmic dawn and reionization, and we make them available at this link

« less
; ; ; ; ;
Publication Date:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Page Range or eLocation-ID:
p. 3657-3681
Oxford University Press
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We report the most sensitive upper limits to date on the 21 cm epoch of reionization power spectrum using 94 nights of observing with Phase I of the Hydrogen Epoch of Reionization Array (HERA). Using similar analysis techniques as in previously reported limits, we find at 95% confidence that Δ2(k= 0.34hMpc−1) ≤ 457 mK2atz= 7.9 and that Δ2(k= 0.36hMpc−1) ≤ 3496 mK2atz= 10.4, an improvement by a factor of 2.1 and 2.6, respectively. These limits are mostly consistent with thermal noise over a wide range ofkafter our data quality cuts, despite performing a relatively conservative analysis designed to minimize signal loss. Our results are validated with both statistical tests on the data and end-to-end pipeline simulations. We also report updated constraints on the astrophysics of reionization and the cosmic dawn. Using multiple independent modeling and inference techniques previously employed by HERA Collaboration, we find that the intergalactic medium must have been heated above the adiabatic cooling limit at least as early asz= 10.4, ruling out a broad set of so-called “cold reionization” scenarios. If this heating is due to high-mass X-ray binaries during the cosmic dawn, as is generally believed, our result’s 99% credible interval excludes the local relationshipmore »between soft X-ray luminosity and star formation and thus requires heating driven by evolved low-metallicity stars.

    « less
  2. null (Ed.)
    ABSTRACT Precision calibration poses challenges to experiments probing the redshifted 21-cm signal of neutral hydrogen from the Cosmic Dawn and Epoch of Reionization (z ∼ 30–6). In both interferometric and global signal experiments, systematic calibration is the leading source of error. Though many aspects of calibration have been studied, the overlap between the two types of instruments has received less attention. We investigate the sky based calibration of total power measurements with a HERA dish and an EDGES-style antenna to understand the role of autocorrelations in the calibration of an interferometer and the role of sky in calibrating a total power instrument. Using simulations we study various scenarios such as time variable gain, incomplete sky calibration model, and primary beam model. We find that temporal gain drifts, sky model incompleteness, and beam inaccuracies cause biases in the receiver gain amplitude and the receiver temperature estimates. In some cases, these biases mix spectral structure between beam and sky resulting in spectrally variable gain errors. Applying the calibration method to the HERA and EDGES data, we find good agreement with calibration via the more standard methods. Although instrumental gains are consistent with beam and sky errors similar in scale to those simulated,more »the receiver temperatures show significant deviations from expected values. While we show that it is possible to partially mitigate biases due to model inaccuracies by incorporating a time-dependent gain model in calibration, the resulting errors on calibration products are larger and more correlated. Completely addressing these biases will require more accurate sky and primary beam models.« less

    We introduce the thesan project, a suite of large volume ($L_\mathrm{box} = 95.5 \, \mathrm{cMpc}$) radiation-magnetohydrodynamic simulations that simultaneously model the large-scale statistical properties of the intergalactic medium during reionization and the resolved characteristics of the galaxies responsible for it. The flagship simulation has dark matter and baryonic mass resolutions of $3.1 \times 10^6\, {\rm M_\odot }$ and $5.8 \times 10^5\, {\rm M_\odot }$, respectively. The gravitational forces are softened on scales of 2.2 ckpc with the smallest cell sizes reaching 10 pc at z = 5.5, enabling predictions down to the atomic cooling limit. The simulations use an efficient radiation hydrodynamics solver (arepo-rt) that precisely captures the interaction between ionizing photons and gas, coupled to well-tested galaxy formation (IllustrisTNG) and dust models to accurately predict the properties of galaxies. Through a complementary set of medium resolution simulations we investigate the changes to reionization introduced by different assumptions for ionizing escape fractions, varying dark matter models, and numerical convergence. The fiducial simulation and model variations are calibrated to produce realistic reionization histories that match the observed evolution of the global neutral hydrogen fraction and electron scattering optical depth to reionization. They also match a wealth of high-redshift observationally inferred data, including themore »stellar-to-halo-mass relation, galaxy stellar mass function, star formation rate density, and the mass–metallicity relation, despite the galaxy formation model being mainly calibrated at z = 0. We demonstrate that different reionization models give rise to varied bubble size distributions that imprint unique signatures on the 21 cm emission, especially on the slope of the power spectrum at large spatial scales, enabling current and upcoming 21 cm experiments to accurately characterize the sources that dominate the ionizing photon budget.

    « less
  4. We present a multiline survey of the interstellar medium (ISM) in two z  > 6 quasar host galaxies, PJ231−20 ( z  = 6.59) and PJ308−21 ( z  = 6.23), and their two companion galaxies. Observations were carried out using the Atacama Large (sub-)Millimeter Array (ALMA). We targeted 11 transitions including atomic fine-structure lines (FSLs) and molecular lines: [NII] 205 μm , [CI] 369 μm , CO ( J up  = 7, 10, 15, 16), H 2 O 3 12  − 2 21 , 3 21  − 3 12 , 3 03  − 2 12 , and the OH 163 μm doublet. The underlying far-infrared (FIR) continuum samples the Rayleigh-Jeans tail of the respective dust emission. By combining this information with our earlier ALMA [CII] 158 μm observations, we explored the effects of star formation and black hole feedback on the ISM of the galaxies using the CLOUDY radiative transfer models. We estimated dust masses, spectral indexes, IR luminosities, and star-formation rates from the FIR continuum. The analysis of the FSLs indicates that the [CII] 158 μm and [CI] 369 μm emission arises predominantly from the neutral medium in photodissociation regions (PDRs). We find that line deficits agree with those of local luminous IR galaxies. The CO spectral line energy distributions (SLEDs) reveal significant high- J COmore »excitation in both quasar hosts. Our CO SLED modeling of the quasar PJ231−20 shows that PDRs dominate the molecular mass and CO luminosities for J up  ≤ 7, while the J up  ≥ 10 CO emission is likely driven by X-ray dissociation regions produced by the active galactic nucleus (AGN) at the very center of the quasar host. The J up  > 10 lines are undetected in the other galaxies in our study. The H 2 O 3 21  − 3 12 line detection in the same quasar places this object on the L H 2 O  −  L TIR relation found for low- z sources, thus suggesting that this water vapor transition is predominantly excited by IR pumping. Models of the H 2 O SLED and of the H 2 O-to-OH 163 μm ratio point to PDR contributions with high volume and column density ( n H  ∼ 0.8 × 10 5 cm −3 , N H  = 10 24 cm −2 ) in an intense radiation field. Our analysis suggests a less highly excited medium in the companion galaxies. However, the current data do not allow us to definitively rule out an AGN in these sources, as suggested by previous studies of the same objects. This work demonstrates the power of multiline studies of FIR diagnostics in order to dissect the physical conditions in the first massive galaxies emerging from cosmic dawn.« less

    Cosmic dawn, the onset of star formation in the early universe, can in principle be studied via the 21-cm transition of neutral hydrogen, for which a sky-averaged absorption signal, redshifted to MHz frequencies, is predicted to be O(10–100) mK. Detection requires separation of the 21-cm signal from bright chromatic foreground emission due to Galactic structure, and the characterization of how it couples to instrumental response. In this work, we present characterization of antenna gain patterns for the Large-aperture Experiment to detect the Dark Ages (LEDA) via simulations, assessing the effects of the antenna ground-plane geometries used, and measured soil properties. We then investigate the impact of beam pattern uncertainties on the reconstruction of a Gaussian absorption feature. Assuming the pattern is known and correcting for the chromaticity of the instrument, the foregrounds can be modelled with a log-polynomial, and the 21-cm signal identified with high accuracy. However, uncertainties on the soil properties lead to percentage changes in the chromaticity that can bias the signal recovery. The bias can be up to a factor of two in amplitude and up to few  per cent in the frequency location. These effects do not appear to be mitigated by larger ground planes, conversely gainmore »patterns with larger ground planes exhibit more complex frequency structure, significantly compromising the parameter reconstruction. Our results, consistent with findings from other antenna design studies, emphasize the importance of chromatic response and suggest caution in assuming log-polynomial foreground models in global signal experiments.

    « less