Abstract This study investigates the mechanism behind the recent boreal summer circulation trend pattern and associated high surface temperature anomalies over the Russian Far East. This circulation pattern includes a prominent anticyclone over the Kamchatka Peninsula where heat extremes have been trending upward. Observational analysis and numerical model simulations indicate that latent heating anomalies centered over Yakutia, west of Kamchatka Peninsula, can excite this anticyclone and the downstream circulation trend pattern. However, this anticyclone alone is insufficient for generating the anomalously high temperature over the region. Instead, the high temperature emerges when there is an upstream precursor that resembles the Eurasian circulation trend pattern. Warm advection by this upstream circulation initiates a positive temperature anomaly over the Russian Far East, one week prior to the onset of the anticyclone in this region. As this anticyclone develops, the temperature anomalies further intensify by adiabatic warming and shortwave radiative heating. If upstream circulation anomalies are opposite to those of the Eurasian trend pattern, the initial temperature over the Russian Far East is anomalously negative. As a result, the adiabatic warming and shortwave radiative heating within this anticyclonic region are unable to bring the temperature to an extreme condition. These findings indicate that the temperature extremes over the Russian Far East are contributed by a combination of remote and local circulation forcings and provide insights into subseasonal forecasts of heat waves over this region.
more »
« less
The Role of Latent Heating Anomalies in Exciting the Summertime Eurasian Circulation Trend Pattern and High Surface Temperature
Abstract Dynamical mechanisms for the summer Eurasian circulation trend pattern are investigated by analyzing reanalysis data and conducting numerical model simulations. The daily circulations that resemble the Eurasian circulation trend pattern are identified and categorized into two groups based on surface warming signal over central and eastern Europe. In the group with large warm anomaly, the upper-level circulation takes on a wave packet form over Eurasia, and there are enhanced latent heating anomalies centered over the North Sea and suppressed latent heating anomalies over the Caspian Sea. The numerical model calculations indicate that these latent heating anomalies can excite an upper-level circulation response that resembles the Eurasian circulation trend pattern. Additional analysis indicates that trends of these two latent heating centers contribute to the long-term circulation trend. In the weak warm anomaly group, the circulation pattern takes on a circumglobal teleconnection (CGT) pattern, and there is no heating signal that reinforces the circulation. These results indicate that not all CGT-like patterns excite temperature anomalies that are persistent and in phase with the trend pattern, and that quasi-stationary forcings, such as the latent heating anomalies, play an important role in driving the boreal summer circulation anomaly that accompanies the strong and persistent surface temperature signal.
more »
« less
- Award ID(s):
- 1948667
- PAR ID:
- 10363293
- Publisher / Repository:
- American Meteorological Society
- Date Published:
- Journal Name:
- Journal of Climate
- Volume:
- 35
- Issue:
- 2
- ISSN:
- 0894-8755
- Format(s):
- Medium: X Size: p. 801-814
- Size(s):
- p. 801-814
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Abstract This study examines the role of the latent heating in exciting the upper-level circulation anomaly which destructively interferes with the climatological stationary wave in the Western Hemisphere during boreal summer. This destructive interference pattern closely resembles the circulation trend which is known to be responsible for surface heat extreme trends. To investigate the mechanism behind this circulation anomaly, daily stationary-transient wave interference and related meteorological variables are analyzed using reanalysis data for the period of 1979-2017. Numerical model simulations forced by reanalysis heating anomalies indicate that the destructive interference pattern is most effectively excited by latent heating anomalies over the North Pacific and eastern Canada. The North Pacific heating anomaly drives circulation anomalies that not only resemble the destructive interference pattern, but also transport moisture into eastern Canada. The resulting latent heating over eastern Canada drives circulation that further reinforces the destructive interference pattern which includes a prominent high pressure system over Greenland. Tropical heating also plays a role in driving the destructive interference pattern. On intraseasonal time scales, the destructive interference pattern is preceded by suppressed Indo-western Pacific heating and enhanced North American monsoon heating. On decadal time scales, both heating centers have strengthened, but the trend of the North American monsoon heating was greater than that of the Indo-Western Pacific heating. These uneven heating trends help explain the resemblance between the destructive interference pattern and the circulation trend over the Western Hemisphere.more » « less
-
Abstract In recent decades, Arctic-amplified warming and sea-ice loss coincided with a prolonged wintertime Eurasian cooling trend. This observed Warm Arctic–Cold Eurasia pattern has occasionally been attributed to sea-ice forced changes in the midlatitude atmospheric circulation, implying an anthropogenic cause. However, comprehensive climate change simulations do not produce Eurasian cooling, instead suggesting a role for unforced atmospheric variability. This study seeks to clarify the source of this model-observation discrepancy by developing a statistical approach that enables direct comparison of Arctic-midlatitude interactions. In both historical simulations and observations, we first identify Ural blocking as the primary causal driver of sea ice, temperature, and circulation anomalies consistent with the Warm Arctic–Cold Eurasia pattern. Next, we quantify distinct transient responses to this Ural blocking, which explain the model-observation discrepancy in historical Eurasian temperature. Observed 1988–2012 Eurasian cooling occurs in response to a pronounced positive trend in Ural sea-level pressure, temporarily masking long-term midlatitude warming. This observed sea-level pressure trend lies at the outer edge of simulated variability in a fully coupled large ensemble, where smaller sea-level pressure trends have little impact on the ensemble mean temperature trend over Eurasia. Accounting for these differences bring observed and simulated trends into remarkable agreement. Finally, we quantify the influence of sea-ice loss on the magnitude of the observed Ural sea-level pressure trend, an effect that is absent in historical simulations. These results illustrate that sea-ice loss and tropospheric variability can both play a role in producing Eurasian cooling. Furthermore, by conducting a direct model-observation comparison, we reveal a key difference in the causal structures characterizing the Warm Arctic–Cold Eurasia Pattern, which will guide ongoing efforts to explain the lack of Eurasian cooling in climate change simulations.more » « less
-
Abstract According to baroclinic adjustment theory, the isentropic slope maintains its marginal state for baroclinic instability. However, the recent trend of Arctic warming raises the possibility that there could have been a systematic change in the extratropical isentropic slope. In this study, global reanalysis data are used to investigate this possibility. The result shows that tropospheric isentropes north of 50°N have been flattening significantly during winter for the recent 25 years. This trend pattern fluctuates at intraseasonal time scales. An examination of the temporal evolution indicates that it is the planetary-scale (zonal wavenumbers-1–3) eddy heat fluxes, not the synoptic-scale eddy heat fluxes, that flatten the isentropes; synoptic-scale eddy heat fluxes instead respond to the subsequent changes in isentropic slope. This extratropical planetary-scale wave growth is preceded by an enhanced zonal asymmetry of tropical heating and poleward wave activity vectors. A numerical model is used to test if the observed latent heating can generate the observed isentropic slope anomalies. The result shows that the tropical heating indeed contributes to the isentropic slope trend. The agreement between the model solution and the observation improves substantially if extratropical latent heating is also included in the forcing. The model temperature response shows a pattern resembling the warm-Arctic–cold-continent pattern. From these results, it is concluded that the recent flattening trend of isentropic slope north of 50°N is mostly caused by planetary-scale eddy activities generated from latent heating, and that this change is accompanied by a warm-Arctic–cold-continent pattern that permeates the entire troposphere.more » « less
-
Abstract The summer of 2010 was characterized by weather and climate extremes such as the western Russia heatwave and the Pakistan floods. A recent study found that summer was dominated by a particular 200 hPa geopotential height pattern featuring an anomalous Rossby wave train with ridges centred over Greenland, Europe and Russia. The daily frequency of this pattern has dramatically increased recently and closely resembles the mean‐state difference in 200 hPa geopotential height fields between 1998–2014 (P2) and 1979–1997 (P1). Because anomalous wave trains are often driven by localized diabatic heating, it is tested in this study whether the P2 minus P1 pattern is caused by diabatic heating anomalies near Greenland. While it is found that sea ice concentrations declined and sea‐surface temperatures rose over Baffin Bay to the west of Greenland during P2, surface latent heat fluxes actually increased downward, indicating that surface processes were likely not the source of diabatic heating. Rather, an increase in vertically integrated horizontal latent‐heat flux convergence over Baffin Bay was observed in P2, which led to the condensation of water vapour and latent heating. Thus, the mid‐tropospheric circulation established the diabatic heating. A set of initial‐value calculations with idealized heating over Baffin Bay show solutions that remarkably resemble the P2 minus P1 pattern and provide a plausible explanation as to why the pattern has been occurring more frequently. This study demonstrates that changes in the Arctic can arise from moisture transport from the midlatitudes, and, in turn, these changes can induce weather and climate extremes in distant midlatitude regions.more » « less
An official website of the United States government
