skip to main content


Title: Extreme Water Level Simulation and Component Analysis in Delaware Estuary during Hurricane Isabel
Abstract

Sea level rise and intense hurricane events make the East and Gulf Coasts of the United States increasingly vulnerable to flooding, which necessitates the development of computational models for accurate water level simulation in these areas to safeguard the coastal wellbeing. With this regard, a model framework for water level simulation over coastal transition zone during hurricane events is built in this study. The model takes advantage of the National Water Model’s strength in simulating rainfall–runoff process, and D‐Flow Flexible Mesh’s ability to support unstructured grid in hydrodynamic processes simulation with storm surges/tides information from the Advanced CIRCulation model. We apply the model on the Delaware Estuary to simulate extreme water level and to investigate the contribution of different physical components to it during Hurricane Isabel (2003). The model shows satisfactory performance with an average Willmott skill of 0.965. Model results suggest that storm surge is the most dominating component of extreme water level with an average contribution of 78.16%, second by the astronomical tide with 19.52%. While the contribution of rivers is mainly restricted to the upper part of the estuary upstream of Schuylkill River, local wind‐induced water level is more pronounced with values larger than 0.2 m over most part of the estuary.

 
more » « less
NSF-PAR ID:
10363328
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
JAWRA Journal of the American Water Resources Association
Volume:
58
Issue:
1
ISSN:
1093-474X
Page Range / eLocation ID:
p. 19-33
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In the northwestern Gulf of Mexico (nwGOM), the coastal climate shifts abruptly from the humid northeast to the semiarid southwest within a narrow latitudinal range. The climate effect plays an important role in controlling freshwater discharge into the shallow estuaries in this region. In addition to diminishing freshwater runoff down the coast, evaporation also increases substantially. Hence, these estuaries show increasing salinity along the coastline due to the large difference in freshwater inflow balance (river runoff and precipitation minus evaporation and diversion). However, this spatial gradient can be disrupted by intense storm events as a copious amount of precipitation leads to river flooding, which can cause temporary freshening of these systems in extreme cases, in addition to freshwater-induced ephemeral stratification. We examined estuarine water aragonite saturation state (Ω arag ) data collected between 2014 and 2018, covering a period of contrasting hydrological conditions, from the initial drought to multiple flooding events, including a brief period that was influenced by a category 4 hurricane. Based on freshwater availability, these estuaries exhibited a diminishing Ω arag fluctuation from the most freshwater enriched Guadalupe Estuary to the most freshwater-starved Nueces Estuary. While Ω arag values were usually much higher than the threshold level (Ω arag = 1), brief freshwater discharge events and subsequent low oxygen levels in the lower water column led to episodic corrosive conditions. Based on previously obtained Ω arag temporal trends and Ω arag values obtained in this study, we estimated the time of emergence (ToE) for Ω arag . Not only did estuaries show decreasing ToE with diminishing freshwater availability but the sub-embayments of individual estuaries that had a less freshwater influence also had shorter ToE. This spatial pattern suggests that planning coastal restoration efforts, especially for shellfish organisms, should emphasize areas with longer ToE. 
    more » « less
  2. null (Ed.)
    Quantifying and characterizing groundwater flow and discharge from barrier islands to coastal waters is crucial for assessing freshwater resources and contaminant transport to the ocean. In this study, we examined the groundwater hydrological response, discharge, and associated nutrient fluxes in Dauphin Island, a barrier island located in the northeastern Gulf of Mexico. We employed radon ( 222 Rn) and radium (Ra) isotopes as tracers to evaluate the temporal and spatial variability of fresh and recirculated submarine groundwater discharge (SGD) in the nearshore waters. The results from a 40-day continuous 222 Rn time series conducted during a rainy season suggest that the coastal area surrounding Dauphin Island was river-dominated in the days after storm events. Groundwater response was detected about 1 week after the precipitation and peak river discharge. During the period when SGD was a factor in the nutrient budget of the coastal area, the total SGD rates were as high as 1.36 m day –1 , or almost three times higher than detected fluxes during the river-dominated period. We found from a three-endmember Ra mixing model that most of the SGD from the barrier island was composed of fresh groundwater. SGD was driven by marine and terrestrial forces, and focused on the southeastern part of the island. We observed spatial variability of nutrients in the subterranean estuary across this part of the island. Reduced nitrogen (i.e., NH 4 + and dissolved organic nitrogen) fluxes dominated the eastern shore with average rates of 4.88 and 5.20 mmol m –2 day –1 , respectively. In contrast, NO 3 – was prevalent along the south-central shore, which has significant tourism developments. The contrasting nutrient dynamics resulted in N- and P-limited coastal water in the different parts of the island. This study emphasizes the importance of understanding groundwater flow and dynamics in barrier islands, particularly those urbanized, prone to storm events, or located near large estuaries. 
    more » « less
  3. Abstract

    Since the late nineteenth century, channel depths have more than doubled in parts of New York Harbor and the tidal Hudson River, wetlands have been reclaimed and navigational channels widened, and river flow has been regulated. To quantify the effects of these modifications, observations and numerical simulations using historical and modern bathymetry are used to analyze changes in the barotropic dynamics. Model results and water level records for Albany (1868 to present) and New York Harbor (1844 to present) recovered from archives show that the tidal amplitude has more than doubled near the head of tides, whereas increases in the lower estuary have been slight (<10%). Channel deepening has reduced the effective drag in the upper tidal river, shifting the system from hyposynchronous (tide decaying landward) to hypersynchronous (tide amplifying). Similarly, modeling shows that coastal storm effects propagate farther landward, with a 20% increase in amplitude for a major event. In contrast, the decrease in friction with channel deepening has lowered the tidally averaged water level during discharge events, more than compensating for increased surge amplitude. Combined with river regulation that reduced peak discharges, the overall risk of extreme water levels in the upper tidal river decreased after channel construction, reducing the water level for the 10‐year recurrence interval event by almost 3 m. Mean water level decreased sharply with channel modifications around 1930, and subsequent decadal variability has depended both on river discharge and sea level rise. Channel construction has only slightly altered tidal and storm surge amplitudes in the lower estuary.

     
    more » « less
  4. Hurricane Sandy, one of the largest Atlantic hurricanes on record, made landfall as an extratropical cyclone on the coast of New Jersey (29 October 2012) along a track almost perpendicular to the coast. Ten days later a northeaster caused heavy precipitation and elevated water levels along the coast. Two years of pre-storm monitoring and research in marshes of Barnegat Bay and the Delaware Estuary provided an opportunity to evaluate the impacts of Hurricane Sandy and the succeeding northeaster across the region. Peak water levels during Sandy ranged from 111 to 184 cm above the marsh surface in Barnegat Bay and 75 to 135 cm above the marsh surface in the Delaware Estuary. Despite widespread flooding and damage to coastal communities, the storm had modest and localized impacts on coastal marshes of New Jersey. Measurements made on the marsh platform illustrated localized responses to the storms including standing biomass removal, and changes in peak biomass the following summer. Marsh surface and elevation changes were variable within marshes and across the region. Localized elevation changes over the storm period were temporary and associated with subsurface processes. Over the long-term, there was no apparent impact of the 2012 storms, as elevations and regression slopes pre- and several months post-storm were not significant. Vegetation changes in the summer following the fall 2012 storms were also variable and localized within and among marshes. These results suggest that Hurricane Sandy and the succeeding northeaster did not have a widespread long-term impact on saline marshes in this region. Possible explanations are the dissipation of surge and wave energy from the barrier island in Barnegat Bay and the extreme water levels buffering the low-lying marsh surface from waves, winds, and currents, and carrying suspended loads past the short-statured marsh grasses to areas of taller vegetation and/or structure. These findings demonstrate that major storms that have substantial impacts on infrastructure and communities can have short-term localized effects on coastal marshes in the vicinity of the storm track.   
    more » « less
  5. Abstract

    In 2016, Hurricane Matthew accounted for 25% of the annual riverine C loading to the Neuse River Estuary‐Pamlico Sound, in eastern North Carolina. Unlike inland watersheds, dissolved organic carbon (DOC) was the dominant component of C flux from this coastal watershed and stable carbon isotope and chromophoric dissolved organic matter evidence indicated the estuary and sound were dominated by wetland‐derived terrigenous organic matter sources for several months following the storm. Persistence of wetland‐derived DOC enabled its degradation to carbon dioxide (CO2), which was supported by sea‐to‐air CO2fluxes measured in the sound weeks after the storm. Under future increasingly extreme weather events such as Hurricane Matthew, and most recently Hurricane Florence (September 2018), degradation of terrestrial DOC in floodwaters could increase flux of CO2from estuaries and coastal waters to the atmosphere.

     
    more » « less