Grain boundaries in polycrystalline materials migrate to reduce the total excess energy. It has recently been found that the factors governing migration rates of boundaries in bicrystals are insufficient to explain boundary migration in polycrystals. We first review our current understanding of the atomistic mechanisms of grain boundary migration based on simulations and high-resolution transmission electron microscopy observations. We then review our current understanding at the continuum scale based on simulations and observations using high-energy diffraction microscopy. We conclude that detailed comparisons of experimental observations with atomistic simulations of migration in polycrystals (rather than bicrystals) are required to better understand the mechanisms of grain boundary migration, that the driving force for grain boundary migration in polycrystals must include factors other than curvature, and that current simulations of grain growth are insufficient for reproducing experimental observations, possibly because of an inadequate representation of the driving force.
To study discontinuous precipitation, which is an important method for strengthening materials, we observed the nucleation and growth of discontinuous precipitates in Cu–Ag alloys using electron backscatter diffraction and scanning transmission electron microscopy. We found that discontinuous precipitation always started with Ag precipitates, which nucleated on Cu grain boundaries. These precipitates then each took the shape of a large, abutted cone that shared a semi-coherent interface with one of the Cu grains, topped by a small spherical cap that shared an incoherent interface with the Cu grain on the opposite side of the boundary. This formation created a difference between the levels of interface energy on each side of boundary. We assume that this difference and boundary curvature together generates the driving force necessary to push grain boundary migration, thus triggering discontinuous precipitation. Because of grain boundary migration, Ag solute was consumed at one side of the grain, which causes a solute difference. The difference produces mainly driving force, pushing the boundaries to migrate forward.
more » « less- NSF-PAR ID:
- 10363384
- Publisher / Repository:
- IOP Publishing
- Date Published:
- Journal Name:
- Materials Research Express
- Volume:
- 9
- Issue:
- 2
- ISSN:
- 2053-1591
- Page Range / eLocation ID:
- Article No. 026530
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Molecular dynamics (MD) simulations are applied to study solute drag by curvature-driven grain boundaries (GBs) in Cu–Ag solid solution. Although lattice diffusion is frozen on the MD timescale, the GB significantly accelerates the solute diffusion and alters the state of short-range order in lattice regions swept by its motion. The accelerated diffusion produces a nonuniform redistribution of the solute atoms in the form of GB clusters enhancing the solute drag by the Zener pinning mechanism. This finding points to an important role of lateral GB diffusion in the solute drag effect. A 1.5 at.%Ag alloying reduces the GB free energy by 10–20% while reducing the GB mobility coefficients by more than an order of magnitude. Given the greater impact of alloying on the GB mobility than on the capillary driving force, kinetic stabilization of nanomaterials against grain growth is likely to be more effective than thermodynamic stabilization aiming to reduce the GB free energy.more » « less
-
Abstract Atom probe tomography (APT) of a nanocrystalline Cu–7 at.% V thin film annealed at 400°C for 1 h revealed chemical partitioning in the form of solute segregation. The vanadium precipitated along high angle grain boundaries and at triple junctions, determined by cross-correlative precession electron diffraction of the APT specimen. Upon field evaporation, the V 2+ /(V 1+ + VH 1+ ) ratio from the decomposed ions was ~3 within the matrix grains and ~16 within the vanadium precipitates. It was found that the VH 1+ complex was prevalent in the matrix, with its presence explained in terms of hydrogen's ability to assist in field evaporation. The change in the V 2+ /(V 1+ + VH 1+ ) charge-state ratio (CSR) was studied as a function of base temperature (25–90 K), laser pulse energy (50–200 pJ), and grain orientation. The strongest influence on changing the CSR was with the varied pulse laser, which made the CSR between the precipitates and the matrix equivalent at the higher laser pulse energies. However, at these conditions, the precipitates began to coarsen. The collective results of the CSRs are discussed in terms of field strengths related to the chemical coordination.more » « less
-
Abstract By mapping grain orientations on parallel serial sections of a SrTiO3ceramic, it was possible to reconstruct three‐dimensional orientation maps containing more than 3000 grains. The grain boundaries were approximated by a continuous mesh of triangles and mean curvatures were determined for each triangle. The integral mean curvatures of grain faces were determined for all grains. Small grains with fewer than 16 neighbors mostly have positive mean curvatures while larger grains with more than 16 neighbors mostly have negative mean curvatures. It is also possible to correlate the mean curvature of individual triangles with the crystallographic characteristics of the grain boundary. The mean curvature is lowest for grain boundaries with (100) orientations and highest for grain boundaries with (111) orientations. This trend is inversely correlated to the relative areas of grain boundaries and directly correlated to the relative grain boundary energy. The direct correlation between the energy and curvature is consistent with the expected behavior of grain boundaries made up of singular orientations. Furthermore, because both the relative energy and curvature of grain boundaries with (100) orientations are minima in the distributions, these boundaries also have the lowest driving force for migration.
-
The electron reflection probability r at symmetric twin boundaries Σ3, Σ5, Σ9, and Σ11 is predicted from first principles for the eight most conductive face-centered cubic (fcc) metals. r increases with decreasing interplanar distance of atomic planes parallel to the boundary. This provides the basis for an extrapolation scheme to estimate the reflection probability r r at random grain boundaries, which is relatively small, r r = 0.28–0.39, for Cu, Ag, and Au due to their nearly spherical Fermi surfaces, but approximately two times higher for Al, Ca, Ni, Rh, and Ir with a predicted r r = 0.61–0.72. The metal resistivity in the limit of small randomly oriented grains with fixed average size is expected to be proportional to the materials benchmark quantity ρ o λ × r r /(1 − r r ), where ρ o and λ are the bulk resistivity and bulk electron mean free path, respectively. Cu has the lowest value for this quantity, indicating that all other fcc metals have a higher resistivity in the limit of small randomly oriented grains. Thus, the conductivity benefit of replacement metals for narrow Cu interconnect lines can only be realized if the grains are larger than the linewidth or exhibit symmetric orientation relationships where r < r r .more » « less