skip to main content

This content will become publicly available on March 2, 2023

Title: Gasdynamic electron cyclotron ion sources: Basic physics, applications, and diagnostic techniques

The gasdynamic electron cyclotron resonance (ECR) ion source is a type of the device in which the ionization efficiency is achieved primarily due to a high plasma density. Because of a high particle collision rate, the confinement is determined by a gasdynamic plasma outflow from a magnetic trap. Due to high efficiency of resonant heating, electrons gain energy significantly higher than that in inductively or capacitively coupled plasmas. As a consequence of such a parameter combination, the gasdynamic ECR plasma can be a unique source of low to medium charged ions, providing a high current and an ultimate quality of an ion beam. One of the most demanded directions of its application today is a development of high-current proton injectors for modern accelerators and neutron sources of different intensities. Special plasma parameters allow for the use of diagnostic techniques, traditional for multiply charged ECR plasmas as well as for other types of discharges with a high plasma density. Among the additional techniques, one can mention the methods of numerical simulation and reconstruction of the plasma density and temperature from the parameters of the extracted ion beams. Another point is that the high plasma density makes it possible to measure it more » from the Stark broadening of hydrogen lines by spectroscopy of plasma emission in the visible range, which is a fairly convenient non-invasive diagnostic method. The present paper discusses the main physical aspects of the gasdynamic ECR plasma, suitable diagnostic techniques, and possibilities and future prospects for its various applications.

« less
Authors:
 ;  ;  ;  ;  ;  
Publication Date:
NSF-PAR ID:
10363389
Journal Name:
Review of Scientific Instruments
Volume:
93
Issue:
3
Page Range or eLocation-ID:
Article No. 033502
ISSN:
0034-6748
Publisher:
American Institute of Physics
Sponsoring Org:
National Science Foundation
More Like this
  1. Experiments are conducted to understand atmospheric spark ignition process in more detail. The research done relates the electrical energy dissipated across the spark gap to the measured schlieren ignition volume. The result is the supplied electrical thermal energy. The study provides insight into the structure of plasma and the mechanisms which convert electrical power into heat. The research is done to support laminar burning speed calculations to increase accuracy and extend diagnostic techniques to conditions otherwise immeasurable. Typically, plasma measurements are taken via a Langmuir probe. However, for the automotive ignition plasma, this measurement technique is challenging because of the transient nature, high pressure, and temperatures involved. Therefore, several alternative techniques will be used in order to find the potential distribution of the plasma and unveil the structure of the plasma more specifically the cathode fall. Three different voltage measurements are taken in order to capture the cathode fall of the plasma. One method simply measures the potential using a high voltage probe. This method may be inaccurate because of the presence of charged ions, however, these results are compared to non-intrusive measurements where voltage data is extrapolated over various gaps sizes to zero length. It is generally agreed thatmore »the desired measurement for this work, the cathode fall, remain constant and depends on the composition of the gas and the electrode. Therefore, changing the system input power and the gap will only change the voltage drop across the bulk plasma. The linear change in voltage potential through variation of testing parameters like gap length can then be extrapolated to zero length of the bulk plasma or minimum energy value which should be equal the value of cathode fall and bulk plasma potential respectively. It was found that after excluding systemic losses such as electrical resistance and ignition coil inefficiencies, the primary loss within the plasma gap is the potential drop across the cathode sheath. Excluding the loss in the cathode fall results in a measured electrical data that is responsible for thermal discharge. In order to highlight the findings, electrical discharge energy is compared to the volume of the heated gas kernel in atmospheric air. Removal of the cathode fall data will show that the energy is proportional to the volume of heated gas whereas, before the change in energy dissipation between glow and arc plasmas prevented this relationship from being visible. The data and methods discussed in this research provides the means to determine the thermal energy of ignitions and sparks even when the spark is inaccessible or obscured. Further work will be done utilizing the power measurement found in this work in a model to predict the affected thermal spark volume. It is also proposed that further validation of the proposed measured electrical thermal energy should be compared to the energy measured with a calorimeter to determine any other inefficiencies in the plasma discharge process. Additionally, the experimentation done observes the cathode fall of only glow plasma, Additional work should be done to find the cathode fall of arc plasma.« less
  2. As technology advances and cities become more innovative, the need to harvest energy to power intelligent devices at remote locations, such as wireless sensors, is increasing. This paper focuses on studying and simulating an energy management system (EMS) for energy harvesting with a battery and a supercapacitor for low power applications. Lithium-ion batteries are the primary energy storage source for low power applications due to their high energy density and efficiency. On the other hand, the supercapacitors excel in fast charge and discharge. Furthermore, supercapacitors tolerate high currents due to their low equivalent series resistance (ESR). The supercapacitor in the system increases the time response of the power delivery to the load, and it also absorbs the high currents in the system. Moreover, the supercapacitor covers short-time load demand due to the fluctuation of the renewable source. The EMS monitors the proposed system to maintain power to the load either from the renewable source or the energy storage. The power flow of the energy storage is controlled via DC-DC bidirectional converters. The lithium-ion battery is charged via a constant current (CC) using a sliding mode controller (SMC) and a constant voltage (CV) via a typical PI controller. The response ofmore »the SMC current controller is compared with PI and Fuzzy current controller. Furthermore, the performance of a system having and not having a supercapacitor is compared. Finally, MATLAB modeling system simulation and experimental implementation results are analyzed and presented.« less
  3. A wide variety of plasma geometries and modalities have been utilized for chemical analysis to date, however, there is much left to be understood in terms of the underlying mechanisms. Plasma diagnostics have been used for many years to elucidate these mechanisms, with one of the most powerful techniques being laser scattering approaches. Laser scattering provides information about the energetic species distributions, in terms of kinetic energy and densities, which can provide invaluable insights into the fundamental processes of chemical analysis plasmas with minimal perturbation. Thomson scattering (TS) from free electrons is the most difficult to implement due to the extremely stringent instrumental requirements for discerning the signal from competing scatterers in low-density plasmas, such as those seen in analytical chemistry applications. Nonetheless, relatively few instruments have been developed to satisfy these stringent requirements. In this paper, the design and characterization of a transmission-type triple grating spectrograph (TGS), with high numerical aperture (0.25)/contrast (≤10 −6 at 532 ± 0.5 nm)/stray light rejection (∼1.8 × 10 −8 at 532 ± 22–32 nm) required for TS, will be presented. In addition, proof-of-principle measurements on glow discharges operated under typical optical emission spectroscopy (OES) conditions demonstrate the high light throughput and low limits-of-detectionmore »(∼10 9 cm −3 at ∼1 eV T e ) afforded by the new instrument.« less
  4. Abstract Coulomb collisions provide plasma resistivity and diffusion but in many low-density astrophysical plasmas such collisions between particles are extremely rare. Scattering of particles by electromagnetic waves can lower the plasma conductivity. Such anomalous resistivity due to wave-particle interactions could be crucial to many processes, including magnetic reconnection. It has been suggested that waves provide both diffusion and resistivity, which can support the reconnection electric field, but this requires direct observation to confirm. Here, we directly quantify anomalous resistivity, viscosity, and cross-field electron diffusion associated with lower hybrid waves using measurements from the four Magnetospheric Multiscale (MMS) spacecraft. We show that anomalous resistivity is approximately balanced by anomalous viscosity, and thus the waves do not contribute to the reconnection electric field. However, the waves do produce an anomalous electron drift and diffusion across the current layer associated with magnetic reconnection. This leads to relaxation of density gradients at timescales of order the ion cyclotron period, and hence modifies the reconnection process.
  5. Abstract Radio frequency (RF) driven helicon plasma sources are commonly used for their ability to produce high-density argon plasmas ( n > 10 19  m −3 ) at relatively moderate powers (typical RF power < 2 kW). Typical electron temperatures are <10 eV and typical ion temperatures are <0.6 eV. A newly designed helicon antenna assembly (with concentric, double-layered, fully liquid-cooled RF-transparent windows) operates in steady-state at RF powers up to 10 kW. We report on the dependence of argon plasma density, electron temperature and ion temperature on RF power. At 10 kW, ion temperatures >2 eV in argon plasmas are measured with laser induced fluorescence, which is consistent with a simple volume averaged 0D power balance model. 1D Monte Carlo simulations of the neutral density profile for these plasma conditions show strong neutral depletion near the core and predict neutral temperatures well above room temperatures. The plasmas created in this high-power helicon source (when light ions are employed) are ideally suited for fusion divertor plasma-material interaction studies and negative ion production for neutral beams.