Abstract Understanding the community ecology of vector-borne and zoonotic diseases, and how it may shift transmission risk as it responds to environmental change, has become a central focus in disease ecology. Yet, it has been challenging to link the ecology of disease with reported human incidence. Here, we bridge the gap between local-scale community ecology and large-scale disease epidemiology, drawing from a priori knowledge of tick-pathogen-host ecology to model spatially-explicit Lyme disease (LD) risk, and human Lyme disease incidence (LDI) in California. We first use a species distribution modeling approach to model disease risk with variables capturing climate, vegetation, and ecology of key reservoir host species, and host species richness. We then use our modeled disease risk to predict human disease incidence at the zip code level across California. Our results suggest the ecology of key reservoir hosts—particularly dusky-footed woodrats—is central to disease risk posed by ticks, but that host community richness is not strongly associated with tick infection. Predicted disease risk, which is most strongly influenced by the ecology of dusky-footed woodrats, in turn is a strong predictor of human LDI. This relationship holds in the Wildland-Urban Interface, but not in open access public lands, and is stronger in northern California than in the state as a whole. This suggests peridomestic exposure to infected ticks may be more important to LD epidemiology in California than recreational exposure, and underlines the importance of the community ecology of LD in determining human transmission risk throughout this LD endemic region of far western North America. More targeted tick and pathogen surveillance, coupled with studies of human and tick behavior could improve understanding of key risk factors and inform public health interventions. Moreover, longitudinal surveillance data could further improve forecasts of disease risk in response to global environmental change.
more »
« less
Impact of prior and projected climate change on US Lyme disease incidence
Abstract Lyme disease is the most common vector‐borne disease in temperate zones and a growing public health threat in the United States (US). The life cycles of the tick vectors and spirochete pathogen are highly sensitive to climate, but determining the impact of climate change on Lyme disease burden has been challenging due to the complex ecology of the disease and the presence of multiple, interacting drivers of transmission. Here we incorporated 18 years of annual, county‐level Lyme disease case data in a panel data statistical model to investigate prior effects of climate variation on disease incidence while controlling for other putative drivers. We then used these climate–disease relationships to project Lyme disease cases using CMIP5 global climate models and two potential climate scenarios (RCP4.5 and RCP8.5). We find that interannual variation in Lyme disease incidence is associated with climate variation in all US regions encompassing the range of the primary vector species. In all regions, the climate predictors explained less of the variation in Lyme disease incidence than unobserved county‐level heterogeneity, but the strongest climate–disease association detected was between warming annual temperatures and increasing incidence in the Northeast. Lyme disease projections indicate that cases in the Northeast will increase significantly by 2050 (23,619 ± 21,607 additional cases), but only under RCP8.5, and with large uncertainty around this projected increase. Significant case changes are not projected for any other region under either climate scenario. The results demonstrate a regionally variable and nuanced relationship between climate change and Lyme disease, indicating possible nonlinear responses of vector ticks and transmission dynamics to projected climate change. Moreover, our results highlight the need for improved preparedness and public health interventions in endemic regions to minimize the impact of further climate change‐induced increases in Lyme disease burden.
more »
« less
- Award ID(s):
- 2011147
- PAR ID:
- 10363415
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- Global Change Biology
- Volume:
- 27
- Issue:
- 4
- ISSN:
- 1354-1013
- Page Range / eLocation ID:
- p. 738-754
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Introduction: The incidence of diarrhea, a leading cause of morbidity and mortality in low-income countries such as Nepal, is temperature-sensitive, suggesting it could be associated with climate change. With climate change fueled increases in the mean and variability of temperature and precipitation, the incidence of water and food-borne diseases are increasing, particularly in sub-Saharan Africa and South Asia. This national-level ecological study was undertaken to provide evidence linking weather and climate with diarrhea incidence in Nepal. Method: We analyzed monthly diarrheal disease count and meteorological data from all districts, spanning 15 eco-development regions of Nepal. Meteorological data and monthly data on diarrheal disease were sourced, respectively, from the Department of Hydrology and Meteorology and Health Management Information System (HMIS) of the Government of Nepal for the period from 2002 to 2014. Time-series log-linear regression models assessed the relationship between maximum temperature, minimum temperature, rainfall, relative humidity, and diarrhea burden. Predictors with p-values < 0.25 were retained in the fitted models. Results: Overall, diarrheal disease incidence in Nepal significantly increased with 1 °C increase in mean temperature (4.4%; 95% CI: 3.95, 4.85) and 1 cm increase in rainfall (0.28%; 95% CI: 0.15, 0.41). Seasonal variation of diarrheal incidence was prominent at the national level (11.63% rise in diarrheal cases in summer (95% CI: 4.17, 19.61) and 14.5% decrease in spring (95% CI: −18.81, −10.02) compared to winter season). Moreover, the effects of temperature and rainfall were highest in the mountain region compared to other ecological regions of Nepal. Conclusion: Our study provides empirical evidence linking weather factors and diarrheal disease burden in Nepal. This evidence suggests that additional climate change could increase diarrheal disease incidence across the nation. Mountainous regions are more sensitive to climate variability and consequently the burden of diarrheal diseases. These findings can be utilized to allocate necessary resources and envision a weather-based early warning system for the prevention and control of diarrheal diseases in Nepal.more » « less
-
Newton, Hayley (Ed.)Climate change is having increasingly profound effects on human health, notably those associated with the occurrence, distribution, and transmission of infectious diseases. The number of disparate ecological parameters and pathogens affected by climate change are vast and expansive. Disentangling the complex relationship between these variables is critical for the development of effective countermeasures against its effects. The pathogenVibrio vulnificus, a naturally occurring aquatic bacterium that causes fulminant septicemia, represents a quintessential climate-sensitive organism. In this review, we useV.vulnificusas a model organism to elucidate the intricate network of interactions between climatic factors and pathogens, with the objective of identifying common patterns by which climate change is affecting their disease burden. Recent findings indicate that in regions native toV.vulnificusor related pathogens, climate-driven natural disasters are the chief contributors to their disease outbreaks. Concurrently, climate change is increasing the environmental suitability of areas non-endemic to their diseases, promoting a surge in their natural populations and transmission dynamics, thus elevating the risk of new outbreaks. We highlight potential risk factors and climatic drivers aggravating the threat ofV.vulnificustransmission under both scenarios and propose potential measures for mitigating its impact. By defining the mechanisms by which climate change influencesV.vulnificusdisease burden, we aim to shed light on the transmission dynamics of related disease-causing agents, thereby laying the groundwork for early warning systems and broadly applicable control measures.more » « less
-
Abstract Changing climate has driven shifts in species phenology, influencing a range of ecological interactions from plant–pollinator to consumer–resource. Phenological changes in host–parasite systems have implications for pathogen transmission dynamics. The seasonal timing, or phenology, of peak larval and nymphal tick abundance is an important driver of tick‐borne pathogen prevalence through its effect on cohort‐to‐cohort transmission. Tick phenology is tightly linked to climatic factors such as temperature and humidity. Thus, variation in climate within and across regions could lead to differences in phenological patterns. These differences may explain regional variation in tick‐borne pathogen prevalence of the Lyme disease‐causingBorreliabacteria in vector populations in the United States. For example, one factor thought to contribute to high Lyme disease prevalence in ticks in the eastern United States is the asynchronous phenology of ticks there, where potentially infected nymphal ticks emerge earlier in the season than uninfected larval ticks. This allows the infected nymphal ticks to transmit the pathogen to hosts that are subsequently fed upon by the next generation of larval ticks. In contrast, in the western United States where Lyme disease prevalence is generally much lower, tick phenology is thought to be more synchronous with uninfected larvae emerging slightly before, or at the same time as, potentially infected nymphs, reducing horizontal transmission potential. Sampling larval and nymphal ticks, and their host‐feeding phenology, both across large spatial gradients and through time, is challenging, which hampers attempts to conduct detailed studies of phenology to link it with pathogen prevalence. In this study, we demonstrate through intensive within‐season sampling that the relative abundance and seasonality of larval and nymphal ticks are highly variable along a latitudinal gradient and likely reflect the variable climate in the far western United States with potential consequences for pathogen transmission. We find that feeding patterns were variable and synchronous feeding of juvenile ticks on key blood meal hosts was associated with mean temperature. By characterizing within‐season phenological patterns of the Lyme disease vector throughout a climatically heterogeneous region, we can begin to identify areas with high potential for tick‐borne disease risk and underlying mechanisms at a finer scale.more » « less
-
Powassan virus (POWV) is an emerging tick-borne encephalitic virus in Lyme disease-endemic sites in North America. Due to range expansion and local intensification of blacklegged tick vector (Ixodes scapularis) populations in the northeastern and upper midwestern U.S., human encephalitis cases are increasingly being reported. A better understanding of the transmission cycle between POWV and ticks is required in order to better predict and understand their public health burden. Recent phylogeographic analyses of POWV have identified geographical structuring, with well-defined northeastern and midwestern clades of the lineage II subtype. The extent that geographic and genetically defined sublineages differ in their ability to infect and be transmitted by blacklegged ticks is unclear. Accordingly, we determined whether there are strain-dependent differences in the transmission of POWV to ticks at multiple life stages. Five recent, low-passage POWV isolates were used to measure aspects of vector competence, using viremic and artificial infection methods. Infection rates in experimental ticks remained consistent between all five isolates tested, resulting in a 12–20% infection rate and some differences in viral load. We confirm that these differences are likely not due to differences in host viremia. Our results demonstrate that blacklegged ticks are susceptible to, and capable of transmitting, all tested strains and suggest that the tick–virus association is stable across diverse viral genotypes.more » « less