skip to main content


Title: Allometric constraints and competition enable the simulation of size structure and carbon fluxes in a dynamic vegetation model of tropical forests (LM3PPA‐TV)
Abstract

Tropical forests are a key determinant of the functioning of the Earth system, but remain a major source of uncertainty in carbon cycle models and climate change projections. In this study, we present an updated land model (LM3PPA‐TV) to improve the representation of tropical forest structure and dynamics in Earth system models (ESMs). The development and parameterization of LM3PPA‐TV drew on extensive datasets on tropical tree traits and long‐term field censuses from Barro Colorado Island (BCI), Panama. The model defines a new plant functional type (PFT) based on the characteristics of shade‐tolerant, tropical tree species, implements a new growth allocation scheme based on realistic tree allometries, incorporates hydraulic constraints on biomass accumulation, and features a new compartment for tree branches and branch fall dynamics. Simulation experiments reproduced observed diurnal and seasonal patterns in stand‐level carbon and water fluxes, as well as mean canopy and understory tree growth rates, tree size distributions, and stand‐level biomass on BCI. Simulations at multiple sites captured considerable variation in biomass and size structure across the tropical forest biome, including observed responses to precipitation and temperature. Model experiments suggested a major role of water limitation in controlling geographic variation forest biomass and structure. However, the failure to simulate tropical forests under extreme conditions and the systematic underestimation of forest biomass in Paleotropical locations highlighted the need to incorporate variation in hydraulic traits and multiple PFTs that capture the distinct floristic composition across tropical domains. The continued pressure on tropical forests from global change demands models which are able to simulate alternative successional pathways and their pace to recovery. LM3PPA‐TV provides a tool to investigate geographic variation in tropical forests and a benchmark to continue improving the representation of tropical forests dynamics and their carbon storage potential in ESMs.

 
more » « less
NSF-PAR ID:
10363436
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Global Change Biology
Volume:
26
Issue:
8
ISSN:
1354-1013
Page Range / eLocation ID:
p. 4478-4494
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The climatic feedbacks from vegetation, particularly from tropical forests, can alter climate through land‐atmospheric interactions. Expected shifts in species composition can alter these interactions with profound effects on climate and terrestrial ecosystem dynamics. Ecosystem demographic (ED) models can explicitly represent vegetation dynamics and are a key component of next‐generation Earth System Models (ESMs). Although ED models exhibit greater fidelity and allow more direct comparisons with observations, their interacting parameters can be more difficult to calibrate due to the complex interactions among vegetation groups and physical processes. In addition, while representation of forest successional coexistence in ESMs is necessary to accurately capture forest‐climate interactions, few models can simulate forest coexistence and few studies have calibrated coexisted forest species. Furthermore, although both vegetation characteristics and soil properties affect vegetation dynamics, few studies have paid attention to jointly calibrating parameters related to these two processes. In this study, we develop a computationally‐efficient and physical model structure‐based framework that uses a parallel surrogate global optimization algorithm to calibrate ED models. We calibrate two typically coexisted tropical tree species, early and late successional plants, in a state‐of‐the‐art ED model that is capable of simulating successional diversity in forests. We concurrently calibrate vegetation and soil parameters and validate results against carbon, energy, and water cycle measurements collected in Barro Colorado Island, Panama. The framework can find optimal solutions within 4–12 iterations for 19‐dimensional problems. The calibration for tropical forests has important implications for predicting land‐atmospheric interactions and responses of tropical forests to environmental changes.

     
    more » « less
  2. Abstract

    Despite their low contribution to forest carbon stocks, lianas (woody vines) play an important role in the carbon dynamics of tropical forests. As structural parasites, they hinder tree survival, growth and fecundity; hence, they negatively impact net ecosystem productivity and long‐term carbon sequestration.

    Competition (for water and light) drives various forest processes and depends on the local abundance of resources over time. However, evaluating the relative role of resource availability on the interactions between lianas and trees from empirical observations is particularly challenging. Previous approaches have used labour‐intensive and ecosystem‐scale manipulation experiments, which are infeasible in most situations.

    We propose to circumvent this challenge by evaluating the uncertainty of water and light capture processes of a process‐based vegetation model (ED2) including the liana growth form. We further developed the liana plant functional type in ED2 to mechanistically simulate water uptake and transport from roots to leaves, and start the model from prescribed initial conditions. We then used the PEcAn bioinformatics platform to constrain liana parameters and run uncertainty analyses.

    Baseline runs successfully reproduced ecosystem gas exchange fluxes (gross primary productivity and latent heat) and forest structural features (leaf area index, aboveground biomass) in two sites (Barro Colorado Island, Panama and Paracou, French Guiana) characterized by different rainfall regimes and levels of liana abundance.

    Model uncertainty analyses revealed that water limitation was the factor driving the competition between trees and lianas at the drier site (BCI), and during the relatively short dry season of the wetter site (Paracou). In young patches, light competition dominated in Paracou but alternated with water competition between the wet and the dry season on BCI according to the model simulations.

    The modelling workflow also identified key liana traits (photosynthetic quantum efficiency, stomatal regulation parameters, allometric relationships) and processes (water use, respiration, climbing) driving the model uncertainty. They should be considered as priorities for future data acquisition and model development to improve predictions of the carbon dynamics of liana‐infested forests.

    Synthesis. Competition for water plays a larger role in the interaction between lianas and trees than previously hypothesized, as demonstrated by simulations from a process‐based vegetation model.

     
    more » « less
  3. Abstract. Extreme drought events in Amazon forests are expected to become more frequent and more intense with climate change, threatening ecosystem function and carbon balance. Yet large uncertainties exist on the resilience of this ecosystem to drought. A better quantification of tree hydraulics and mortality processes is needed to anticipate future drought effects on Amazon forests. Most state-of-the-art dynamic global vegetation models are relatively poor in their mechanistic description of these complex processes. Here, we implement a mechanistic plant hydraulic module within the ORCHIDEE-CAN-NHA r7236 land surface model to simulate the percentage loss of conductance (PLC) and changes in water storage among organs via a representation of the water potentials and vertical water flows along the continuum from soil to roots, stems and leaves. The model was evaluated against observed seasonal variability in stand-scale sap flow, soil moisture and productivity under both control and drought setups at the Caxiuanã throughfall exclusion field experiment in eastern Amazonia between 2001 and 2008. A relationship between PLC and tree mortality is built in the model from two empirical parameters, the cumulated duration of drought exposure that triggers mortality, and the mortality fraction in each day exceeding the exposure. Our model captures the large biomass drop in the year 2005 observed 4 years after throughfall reduction, and produces comparable annual tree mortality rates with observation over the study period. Our hydraulic architecture module provides promising avenues for future research in assimilating experimental data to parameterize mortality due to drought-induced xylem dysfunction. We also highlight that species-based (isohydric or anisohydric) hydraulic traits should be further tested to generalize the model performance in predicting the drought risks. 
    more » « less
  4. Abstract

    The biogeochemical processes of carbon (C), nitrogen (N), and phosphorous (P) are fully coupled in the Earth system, which shape the structure, functioning, and dynamics of terrestrial ecosystems. However, the representation of P cycle in terrestrial biosphere models (TBMs) is still in an early stage. Here we incorporated P processes and C‐N‐P interactions into the C‐N coupled Dynamic Land Ecosystem Model (DLEM‐CNP), which had a major feature of the ability in simulating the N and P colimitation on vegetation C assimilation. DLEM‐CNP was intensively calibrated and validated against daily or annual observations from four eddy covariance flux sites, two Hawaiian sites along a chronosequence of soils, and other 13 tropical forest sites. The results indicate that DLEM‐CNP significantly improved simulations of forest gross and net primary production (R2: 0.36–0.97, RMSE:1.1–1.49 g C m−2 year−1for daily GPP at eddy covariance flux sites;R2 = 0.92, RMSE = 176.7 g C m−2 year−1for annual NPP across 13 tropical forest sites). The simulations were also consistent with field observations in terms of biomass, leaf N:P ratio and plant response to fertilizer addition. A sensitivity analysis suggests that simulated results are reasonably robust against uncertainties in model parameter estimates and the model was very sensitive to parameters of P uptake. These results suggest that incorporating P processes and N‐P interaction into terrestrial biosphere models is of critical importance for accurately estimating C dynamics in tropical forests, particularly those P‐limited ones.

     
    more » « less
  5. Abstract

    Forest dynamics and tree species composition vary substantially between Paleotropical and Neotropical forests, but these broad biogeographic regions are treated uniformly in many land models. To assess whether these regional differences translate into variation in productivity and carbon (C) storage, we compiled a database of climate, tree stem growth, litterfall, aboveground net primary production (ANPP), and aboveground biomass across tropical rainforest sites spanning 33 countries throughout Central and South America, Asia, and Australasia, but excluding Africa due to a paucity of available data. Though thesumof litterfall and stem growth (ANPP) did not differ between regions, both stem growth and theratioof stem growth to litterfall were higher in Paleotropical forests compared to Neotropical forests across the full observed range of ANPP. Greater C allocation to woody growth likely explains the much larger aboveground biomass estimates in Paleotropical forests (~29%, or ~80 Mg DW/ha, greater than in the Neotropics). Climate was similar in Paleo‐ and Neotropical forests, thus the observed differences in C likely reflect differences in the evolutionary history of species and forest structure and function between regions. Our analysis suggests that Paleotropical forests, which can be dominated by tall‐statured Dipterocarpaceae species, may be disproportionate hotspots for aboveground C storage. Land models typically treat these distinct tropical forests with differential structures as a single functional unit, but our findings suggest that this may overlook critical biogeographic variation in C storage potential among regions.

     
    more » « less