The expansion of shrubs across the Arctic tundra may fundamentally modify land–atmosphere interactions. However, it remains unclear how shrub expansion pattern is linked with key environmental drivers, such as climate change and fire disturbance. Here we used 40+ years of high‐resolution (~1.0 m) aerial and satellite imagery to estimate shrub‐cover change in 114 study sites across four burned and unburned upland (ice‐poor) and lowland (ice‐rich) tundra ecosystems in northern Alaska. Validated with data from four additional upland and lowland tundra fires, our results reveal that summer precipitation was the most important climatic driver (
- Award ID(s):
- 1928048
- PAR ID:
- 10363441
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- Global Change Biology
- Volume:
- 27
- Issue:
- 3
- ISSN:
- 1354-1013
- Page Range / eLocation ID:
- p. 652-663
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
More than four decades’ high-resolution (~1 meter (m)) remote sensing observation in upland and lowland tundra revealed divergent pathways of shrub-cover responses to fire disturbance and climate change during 1951 to 2016 in the Noatak National Preserve of northern Alaska. We set up 114 study sites (250 m by 250 m) in burned and the adjacent unburned upland and lowland tundra using stratified random sampling. Specifically, all sites were placed with a minimum distance of 500 m apart from one another, and the unburned sites were located in areas greater than 500 m and less than 2,000 m radius surrounding the fire perimeters. To achieve an unbiased representation of tundra types (upland and lowland tundra) and fire severity levels (high, moderate, low, and unburned), a minumun of 12 study sites were randomly assigned to each tundra type × fire severity group. We then analyzed decadal-scale shrub cover change in each study site using supervised support vector machine classifier (ArcGIS 10.5). The data was presented as shrub cover (m2 ha (hectare)-1) at years before fire and after fire, where negative values of Year Since Fire (YSF) correspond to the number of years before fire, and positive values are the number of years after fire. Our results revealed that shrub expansion in the well-drained uplands was largely enhanced by fire disturbance, and it showed positive correlation with fire severity. In contrast, shrub cover decreased in lowland tundra after fire, which triggered thermokarst-associated water impounding and resulted in ~ 50% loss of shrub cover over three decades.more » « less
-
Abstract Alaska’s Yukon-Kuskokwim Delta (YKD) is one of the warmest parts of the Arctic tundra biome and tundra fires are common in its upland areas. Here, we combine field measurements, Landsat observations, and quantitative cover maps for tundra plant functional types (PFTs) to characterize multi-decadal succession and landscape change after fire in lichen-dominated upland tundra of the YKD, where extensive wildfires occurred in 1971–1972, 1985, 2006–2007, and 2015. Unburned tundra was characterized by abundant lichens, and low lichen cover was consistently associated with historical fire. While we observed some successional patterns that were consistent with earlier work in Alaskan tussock tundra, other patterns were not. In the landscape we studied, a large proportion of pre-fire moss cover and surface peat tended to survive fire, which favors survival of existing vascular plants and limits opportunities for seed recruitment. Although shrub cover was much higher in 1985 and 1971–1972 burns than in unburned tundra, tall shrubs (>0.5 m height) were rare and the PFT maps indicate high landscape-scale variability in the degree and persistence of shrub increase after fire. Fire has induced persistent changes in species composition and structure of upland tundra on the YKD, but the lichen-dominated fuels and thick surface peat appear to have limited the potential for severe fire and accompanying edaphic changes. Soil thaw depths were about 10 cm deeper in 2006–2007 burns than in unburned tundra, but were similar to unburned tundra in 1985 and 1971–1972 burns. Historically, repeat fire has been rare on the YKD, and the functional diversity of vegetation has recovered within several decades post-fire. Our findings provide a basis for predicting and monitoring post-fire tundra succession on the YKD and elsewhere.
-
Abstract Climate change is creating widespread ecosystem disturbance across the permafrost zone, including a rapid increase in the extent and severity of tundra wildfire. The expansion of this previously rare disturbance has unknown consequences for lateral nutrient flux from terrestrial to aquatic environments. Lateral loss of nutrients could reduce carbon uptake and slow recovery of already nutrient‐limited tundra ecosystems. To investigate the effects of tundra wildfire on lateral nutrient export, we analyzed water chemistry in and around the 10‐year‐old Anaktuvuk River fire scar in northern Alaska. We collected water samples from 21 burned and 21 unburned watersheds during snowmelt, at peak growing season, and after plant senescence in 2017 and 2018. After a decade of ecosystem recovery, aboveground biomass had recovered in burned watersheds, but overall carbon and nitrogen remained ~20% lower, and the active layer remained ~10% deeper. Despite lower organic matter stocks, dissolved organic nutrients were substantially elevated in burned watersheds, with higher flow‐weighted concentrations of organic carbon (25% higher), organic nitrogen (59% higher), organic phosphorus (65% higher), and organic sulfur (47% higher). Geochemical proxies indicated greater interaction with mineral soils in watersheds with surface subsidence, but optical analysis and isotopes suggested that recent plant growth, not mineral soil, was the main source of organic nutrients in burned watersheds. Burned and unburned watersheds had similar δ15N‐NO3−, indicating that exported nitrogen was of preburn origin (i.e., not recently fixed). Lateral nitrogen flux from burned watersheds was 2‐ to 10‐fold higher than rates of background nitrogen fixation and atmospheric deposition estimated in this area. These findings indicate that wildfire in Arctic tundra can destabilize nitrogen, phosphorus, and sulfur previously stored in permafrost via plant uptake and leaching. This plant‐mediated nutrient loss could exacerbate terrestrial nutrient limitation after disturbance or serve as an important nutrient release mechanism during succession.
-
Abstract Aim Wildfire is an essential disturbance agent that creates burn mosaics, or a patchwork of burned and unburned areas across the landscape. Unburned patches, fire refugia, serve as carbon sinks and seed sources for forest regeneration in burned areas. In the Cajander larch (
Larix cajanderi Mayr.) forests of north‐eastern Siberia, an unprecedented wildfire season in 2020 and little documentation of landscape patch dynamics have resulted in research gaps about the characteristics of fire refugia in northern latitude forests, which are warming faster than other global forest ecosystems. We aim to characterize the 2010 distribution of fire refugia for these forest ecosystems and evaluate their topographic drivers.Location North‐eastern Siberia across the North‐east Siberian Taiga and the Cherskii‐Kolyma Mountain Tundra ecozones.
Time period 2001–2020.
Major taxa studied Cajander larch.
Methods We used Landsat imagery to define burned and unburned patches, and the Arctic digital elevation model to calculate topographic variables. We characterized the size and density of fire refugia. We sampled individual pixels (
n = 80,000) from an image stack that included a binary burned/unburned, elevation, slope, aspect, topographic position index, ruggedness, and tree cover from 2001 to 2020. We evaluated the topographic drivers of fire refugia with boosted regression trees.Results We found no substantial difference in fire refugia size and density across the region. The fire refugia size averaged 7.2 ha (0.09–150,439 ha). The majority of interior burned patches exceed the potential wind dispersal distance from fire refugia. Topographic position index and terrain steepness were important predictors of fire refugia.
Main conclusions Unprecedented wildfires in 2020 did not impact fire refugia formation. Fire refugia are strongly controlled by topographic positions such as uplands and lowlands that influence microsite hydrological conditions. Fire refugia contribute to postfire landscape heterogeneity that preserves ecosystem functions, seed sources, habitat, and carbon sinks.
-
Tundra fires and surface subsidence increase spectral diversity on the Yukon–Kuskokwim Delta, Alaska
Abstract Tundra fires can dramatically influence plant species cover and abundance, organic layer depth, and the magnitude of seasonal permafrost thaw. However, knowledge of the impact of wildfire on short and long-term interactions between vegetation and permafrost thaw remains limited. Here, we evaluate the spatial and temporal interactions between wildfire disturbance and surface subsidence on a remotely derived proxy for species diversity (i.e. spectral diversity (SD)) of 16 fire scars within the Izaviknek and Kingaglia uplands of southwestern Alaska’s Yukon–Kuskokwim Delta with burn dates between 1971 and 2015. SD was calculated as the sum of squared spectral variance of pixel spectra from the mean spectra, within a plant community (analogous to alpha diversity), between plant communities (beta diversity), and across terrain composed of a mosaic of communities (gamma diversity). Surface subsidence was calculated from spaceborne interferometric synthetic aperture radar data from Sentinel-1. Results indicate the burn scars had consistently lower total gamma diversity and greater rates of subsidence than paired unburned reference areas, where both gamma diversity (
R 2= 0.74,p < 0.001) and relative subsidence (R 2= 0.86,p < 0.001) decreased with the time since burn. Compared to older burn scars, young scars had higher gamma spectral diversities (0.013 and 0.005) and greater subsidence rates (−0.097 cm day−1and −0.053 cm day−1). Communities subsiding at higher rates had higher gamma diversities (R 2= 0.81,p < 0.001). Results indicate that rates of post-fire vegetation succession are amplified by the thickening of active layers and surface subsidence that increases both spectral and species diversity over 15 years following fire. These results support the idea that SD may be used as a remotely sensed analog of species diversity, used to advance knowledge of the trajectories of plant community change in response to interacting arctic disturbance regimes.