skip to main content


Title: Chlamydomonas CHT7 is involved in repressing DNA replication and mitotic genes during synchronous growth
Abstract

In the green alga Chlamydomonas reinhardtii, regulation of the cell cycle in response to external cues is critical for survival in a changing environment. The loss of the nuclear COMPROMISED HYDROLYSIS OF TRIACYLGLYCEROLS 7 (CHT7) protein affects the expression of many genes especially in response to nitrogen availability. Cells lacking CHT7 exhibit abnormal cell morphology following nitrogen deprivation and fail to resume normal cell division after N resupply. To investigate the function of CHT7 in the regulation of cell cycle-related pathways, cells were synchronized, and RNA-seq analysis was performed during various stages of the cell cycle. In the cht7 mutant following nitrogen deprivation, the cells were not dividing, but a subset of cell cycle genes involved in DNA replication and mitosis were found to be derepressed, suggesting that the CHT7 protein plays a role in cell cycle regulation that is opposite to that of the mitotic cyclin-dependent kinases. Furthermore, genes for cell wall synthesis and remodeling were found to be abnormally induced in nondividing cht7 cells; this misregulation may deplete cellular resources and thus contribute to cell death following nitrogen deprivation. Lastly, 43 minimally characterized kinases were found to be highly misregulated in cht7. Further analysis suggested that some of these CHT7-regulated kinases may be related to the MAP3K and Aurora-like kinases, while others are unique. Together, these results suggest a role of CHT7 in transcriptional regulation of the cell cycle and reveal several pathways and genes whose expression appears to be subject to a CHT7-mediated regulatory network.

 
more » « less
NSF-PAR ID:
10363496
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
G3 Genes|Genomes|Genetics
Volume:
12
Issue:
3
ISSN:
2160-1836
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    A systematic study on the biological effects of simulated microgravity (sµg) on human pluripotent stem cells (hPSC) is still lacking. Here, we used a fast-rotating 2-D clinostat to investigate the sµg effect on proliferation, self-renewal, and cell cycle regulation of hPSCs. We observed significant upregulation of protein translation of pluripotent transcription factors in hPSC cultured in sµg compared to cells cultured in 1g conditions. In addition to a significant increase in expression of telomere elongation genes. Differentiation experiments showed that hPSC cultured in sµg condition were less susceptible to differentiation compared to cells in 1g conditions. These results suggest that sµg enhances hPSC self-renewal. Our study revealed that sµg enhanced the cell proliferation of hPSCs by regulating the expression of cell cycle-associated kinases. RNA-seq analysis indicated that in sµg condition the expression of differentiation and development pathways are downregulated, while multiple components of the ubiquitin proteasome system are upregulated, contributing to an enhanced self-renewal of hPSCs. These effects of sµg were not replicated in human fibroblasts. Taken together, our results highlight pathways and mechanisms in hPSCs vulnerable to microgravity that imposes significant impacts on human health and performance, physiology, and cellular and molecular processes.

     
    more » « less
  2. Abstract

    Gene regulation in changing environments is critical for maintaining homeostasis. Some animals undergo a stress-resistant diapause stage to withstand harsh environmental conditions encountered during development. MicroRNAs are one mechanism for regulating gene expression during and after diapause. MicroRNAs downregulate target genes posttranscriptionally through the activity of the microRNA-induced silencing complex. Argonaute is the core microRNA-induced silencing complex protein that binds to both the microRNA and to other microRNA-induced silencing complex proteins. The 2 major microRNA Argonautes in the Caenorhabditis elegans soma are ALG-1 and ALG-2, which function partially redundantly. Loss of alg-1 [alg-1(0)] causes penetrant developmental phenotypes including vulval defects and the reiteration of larval cell programs in hypodermal cells. However, these phenotypes are essentially absent if alg-1(0) animals undergo a diapause stage called dauer. Levels of the relevant microRNAs are not higher during or after dauer, suggesting that activity of the microRNA-induced silencing complex may be enhanced in this context. To identify genes that are required for alg-1(0) mutants to develop without vulval defects after dauer, we performed an RNAi screen of genes encoding conserved kinases. We focused on kinases because of their known role in modulating microRNA-induced silencing complex activity. We found RNAi knockdown of 4 kinase-encoding genes, air-2, bub-1, chk-1, and nekl-3, caused vulval defects and reiterative phenotypes in alg-1(0) mutants after dauer, and that these defects were more penetrant in an alg-1(0) background than in wild type. Our results implicate these kinases as potential regulators of microRNA-induced silencing complex activity during postdauer development in C. elegans.

     
    more » « less
  3. Abstract Background

    TheBIN1locus contains the second-most significant genetic risk factor for late-onset Alzheimer’s disease.BIN1undergoes alternate splicing to generate tissue- and cell-type-specific BIN1 isoforms, which regulate membrane dynamics in a range of crucial cellular processes. Whilst the expression of BIN1 in the brain has been characterized in neurons and oligodendrocytes in detail, information regarding microglial BIN1 expression is mainly limited to large-scale transcriptomic and proteomic data. Notably, BIN1 protein expression and its functional roles in microglia, a cell type most relevant to Alzheimer’s disease, have not been examined in depth.

    Methods

    Microglial BIN1 expression was analyzed by immunostaining mouse and human brain, as well as by immunoblot and RT-PCR assays of isolated microglia or human iPSC-derived microglial cells.Bin1expression was ablated by siRNA knockdown in primary microglial cultures in vitro and Cre-lox mediated conditional deletion in adult mouse brain microglia in vivo. Regulation of neuroinflammatory microglial signatures by BIN1 in vitro and in vivo was characterized using NanoString gene panels and flow cytometry methods. The transcriptome data was explored by in silico pathway analysis and validated by complementary molecular approaches.

    Results

    Here, we characterized microglial BIN1 expression in vitro and in vivo and ascertained microglia expressed BIN1 isoforms. By silencingBin1expression in primary microglial cultures, we demonstrate that BIN1 regulates the activation of proinflammatory and disease-associated responses in microglia as measured by gene expression and cytokine production. Our transcriptomic profiling revealed key homeostatic and lipopolysaccharide (LPS)-induced inflammatory response pathways, as well as transcription factors PU.1 and IRF1 that are regulated by BIN1. Microglia-specificBin1conditional knockout in vivo revealed novel roles of BIN1 in regulating the expression of disease-associated genes while counteracting CX3CR1 signaling. The consensus from in vitro and in vivo findings showed that loss ofBin1impaired the ability of microglia to mount type 1 interferon responses to proinflammatory challenge, particularly the upregulation of a critical type 1 immune response gene,Ifitm3.

    Conclusions

    Our convergent findings provide novel insights into microglial BIN1 function and demonstrate an essential role of microglial BIN1 in regulating brain inflammatory response and microglial phenotypic changes. Moreover, for the first time, our study shows a regulatory relationship betweenBin1andIfitm3, two Alzheimer’s disease-related genes in microglia. The requirement for BIN1 to regulateIfitm3upregulation during inflammation has important implications for inflammatory responses during the pathogenesis and progression of many neurodegenerative diseases.

    Graphical Abstract 
    more » « less
  4. Abstract Background Pancreatic cancer is a complex disease with a desmoplastic stroma, extreme hypoxia, and inherent resistance to therapy. Understanding the signaling and adaptive response of such an aggressive cancer is key to making advances in therapeutic efficacy. Redox factor-1 (Ref-1), a redox signaling protein, regulates the conversion of several transcription factors (TFs), including HIF-1α, STAT3 and NFκB from an oxidized to reduced state leading to enhancement of their DNA binding. In our previously published work, knockdown of Ref-1 under normoxia resulted in altered gene expression patterns on pathways including EIF2, protein kinase A, and mTOR. In this study, single cell RNA sequencing (scRNA-seq) and proteomics were used to explore the effects of Ref-1 on metabolic pathways under hypoxia. Methods scRNA-seq comparing pancreatic cancer cells expressing less than 20% of the Ref-1 protein was analyzed using left truncated mixture Gaussian model and validated using proteomics and qRT-PCR. The identified Ref-1’s role in mitochondrial function was confirmed using mitochondrial function assays, qRT-PCR, western blotting and NADP assay. Further, the effect of Ref-1 redox function inhibition against pancreatic cancer metabolism was assayed using 3D co-culture in vitro and xenograft studies in vivo. Results Distinct transcriptional variation in central metabolism, cell cycle, apoptosis, immune response, and genes downstream of a series of signaling pathways and transcriptional regulatory factors were identified in Ref-1 knockdown vs Scrambled control from the scRNA-seq data. Mitochondrial DEG subsets downregulated with Ref-1 knockdown were significantly reduced following Ref-1 redox inhibition and more dramatically in combination with Devimistat in vitro. Mitochondrial function assays demonstrated that Ref-1 knockdown and Ref-1 redox signaling inhibition decreased utilization of TCA cycle substrates and slowed the growth of pancreatic cancer co-culture spheroids. In Ref-1 knockdown cells, a higher flux rate of NADP + consuming reactions was observed suggesting the less availability of NADP + and a higher level of oxidative stress in these cells. In vivo xenograft studies demonstrated that tumor reduction was potent with Ref-1 redox inhibitor similar to Devimistat. Conclusion Ref-1 redox signaling inhibition conclusively alters cancer cell metabolism by causing TCA cycle dysfunction while also reducing the pancreatic tumor growth in vitro as well as in vivo. 
    more » « less
  5. null (Ed.)
    Abstract Background Cotton fibers provide a powerful model for studying cell differentiation and elongation. Each cotton fiber is a singular and elongated cell derived from epidermal-layer cells of a cotton seed. Efforts to understand this dramatic developmental shift have been impeded by the difficulty of separation between fiber and epidermal cells. Results Here we employed laser-capture microdissection (LCM) to separate these cell types. RNA-seq analysis revealed transitional differences between fiber and epidermal-layer cells at 0 or 2 days post anthesis. Specifically, down-regulation of putative cell cycle genes was coupled with upregulation of ribosome biosynthesis and translation-related genes, which may suggest their respective roles in fiber cell initiation. Indeed, the amount of fibers in cultured ovules was increased by cell cycle progression inhibitor, Roscovitine, and decreased by ribosome biosynthesis inhibitor, Rbin-1. Moreover, subfunctionalization of homoeologs was pervasive in fiber and epidermal cells, with expression bias towards 10% more D than A homoeologs of cell cycle related genes and 40–50% more D than A homoeologs of ribosomal protein subunit genes. Key cell cycle regulators were predicted to be epialleles in allotetraploid cotton. MYB-transcription factor genes displayed expression divergence between fibers and ovules. Notably, many phytohormone-related genes were upregulated in ovules and down-regulated in fibers, suggesting spatial-temporal effects on fiber cell development. Conclusions Fiber cell initiation is accompanied by cell cycle arrest coupled with active ribosome biosynthesis, spatial-temporal regulation of phytohormones and MYB transcription factors, and homoeolog expression bias of cell cycle and ribosome biosynthesis genes. These valuable genomic resources and molecular insights will help develop breeding and biotechnological tools to improve cotton fiber production. 
    more » « less