Synopsis Cross-disciplinary research enables us to tackle complex problems that require expertise from different fields. Such collaborations involve researchers who have different perspectives, communication styles, and knowledge bases, and can produce results far greater than the sum of their parts. However, in an era of increasing scientific specialization, there exist many barriers for students and early-career researchers (ECRs) interested in training and undertaking interdisciplinary research endeavors. This perspective examines the challenges that students and ECRs perceive and experience in cross-disciplinary work and proposes pathways to create more inclusive and welcoming research environments. This work emerges from a National Science Foundation (NSF)-funded workshop held during the Society for Integrative and Comparative Biology (SICB) Annual Meeting in January 2023 in Austin, TX. The workshop brought together seasoned interdisciplinary scientists with undergraduate and graduate students to identify and discuss perceived challenges through small group discussions and experience sharing. Through summarizing a range of student concerns about embarking on careers as interdisciplinary scientists and identifying ways to dismantle institutional and lab management-level barriers, we aim to promote an inclusive and collaborative problem-solving environment for scientists of all experience levels.
more »
« less
Advancing Cross‐Disciplinary Understanding of Land‐Atmosphere Interactions
Abstract The evolution of disciplinary silos and increasingly narrow disciplinary boundaries have together resulted in one‐sided approaches to the study of land‐atmosphere interactions—a field that requires a bi‐directional approach to understand the complex feedbacks and interactions that occur. The integration of surface flux and atmospheric boundary layer measurements is therefore essential to advancing our understanding. The Land‐Atmosphere 2021 workshop (held virtually, June 10‐11, 2021) involved almost 300 participants from around the world and promoted cross‐discipline collaboration by way of talks from invited speakers, moderated discussions, breakout sessions, and a virtual poster session. The workshop focused on five main theme areas: “big picture” overview, instrumentation and remote sensing, modeling, water, and aerosols and clouds. In talks and breakout groups, there were frequent calls for more AmeriFlux sites to be instrumented for boundary layer height measurements, and for the development of some “super sites” where profiling instruments would be deployed. There was further agreement on the need for the standardization of various datasets. There was also a consensus that funding agencies need to be willing to support the sorts of large projects (including associated instrumentation) which can drive interdisciplinary work. Early‐career scientists, in particular, expressed enthusiasm for working across disciplinary boundaries but noted that there need to be more financial support and training opportunities so they would be better prepared for interdisciplinary work. Investment in these career development opportunities would enable today's cohort of early‐career scientists to advance the frontiers of interdisciplinary work over the next couple of decades.
more »
« less
- Award ID(s):
- 1702697
- PAR ID:
- 10363502
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Journal of Geophysical Research: Biogeosciences
- Volume:
- 127
- Issue:
- 2
- ISSN:
- 2169-8953
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Developing successful sign language recognition, generation, and translation systems requires expertise in a wide range of fields, including computer vision, computer graphics, natural language processing, human-computer interaction, linguistics, and Deaf culture. Despite the need for deep interdisciplinary knowledge, existing research occurs in separate disciplinary silos, and tackles separate portions of the sign language processing pipeline. This leads to three key questions: 1) What does an interdisciplinary view of the current landscape reveal? 2) What are the biggest challenges facing the field? and 3) What are the calls to action for people working in the field? To help answer these questions, we brought together a diverse group of experts for a two-day workshop. This paper presents the results of that interdisciplinary workshop, providing key background that is often overlooked by computer scientists, a review of the state-of-the-art, a set of pressing challenges, and a call to action for the research community.more » « less
-
Kirgiz, Mehmet Serkan (Ed.)Interdisciplinary research is the synergistic combination of two or more disciplines to achieve one research objective. Current research highlights the importance of interdisciplinary research in science education, particularly between educational experts within a particular science discipline (discipline-based education researchers) and those who study human learning in a more general sense (learning scientists). However, this type of interdisciplinary research is not common and little empirical evidence exists that identifies barriers and possible solutions. We hosted a pre-conference workshop for Discipline-Based Educational Researchers and Learning Scientists designed to support interdisciplinary collaborations. We collected evidence during our workshop regarding barriers to interdisciplinary collaborations in science education, perceptions of perceived cohesion in participants’ home university departments and professional communities, and the impact of our workshop on fostering new connections. Based on participants’ responses, we identified three categories of barriers, Disciplinary Differences , Professional Integration , and Collaborative Practice . Using a post-conference survey, we found an inverse pattern in perceived cohesion to home departments compared to self-identified professional communities. Additionally, we found that after the workshop participants reported increased connections across disciplines. Our results provide empirical evidence regarding challenges to interdisciplinary research in science education and suggest that small professional development workshops have the potential for facilitating durable interdisciplinary networks where participants feel a sense of belonging not always available in their home departments.more » « less
-
Critical Zone (CZ) science investigates the interconnected processes occurring from the top of the vegetation canopy to the base of the groundwater. Recognizing the need to foster cross- disciplinary collaboration among early-career researchers (ECRs), graduate students organized two workshops in 2024 and 2025 aimed at building community, sharing research approaches, and discussing the future of CZ science. These workshops brought together participants from diverse disciplines, institutions, and career stages, and included research talks, structured discussions, and community-building activities. Survey results demonstrated increased confidence in cross-disciplinary collaboration and highlighted the value of supportive, in-person settings for networking and broadening scientific perspectives. Recommendations include expanding support for small, ECR-focused workshops and prioritizing institutional structures that sustain collaborative, transdisciplinary CZ research.more » « less
-
null (Ed.)The National Science Foundation (NSF) held a virtual Symposium on PRedicting Emergence of Virulent Entities by Novel Technologies (PREVENT), on February 22 – 23, 2021 as part of its series on Predictive Intelligence for Pandemic Prevention (PIPP). The workshop brought together more than 60 leading experts, representing NSF research directorates for Biological Sciences (BIO), Computer Information Science and Engineering (CISE), Engineering (ENG), Social, Behavioral and Economic Sciences (SBE), and the Office of International Science and Engineering (OISE), to discuss how the global behavior of an infectious entity can emerge from the interactions that begin occurring between components at the molecular level and expand to physiological, environmental, and population scales. The workshop was divided into four sessions, each focusing on one of four different scales: 1) end-toend (or multi-scale) 2) molecular, 3) physiological and environmental, and 4) population and epidemiological. Particular focus was given to identifying challenges and opportunities in each of these domains. The workshop aimed to: • Identify interdisciplinary advances in science, technology, and human behavior to enable prediction and prevention of future pandemics • Begin to build the necessary convergence to be optimally prepared to prevent future pandemics • Establish convergent data commons and cyberinfrastructure for PIPP This workshop report summarizes the plenary presentations, panel discussions, and breakout group sessions that took place at this event. The results presented here are drawn from the viewpoints expressed by the participants and do not necessarily reflect those of the broader pandemic research community.more » « less
An official website of the United States government
