skip to main content

This content will become publicly available on March 1, 2023

Title: Iterative subspace algorithms for finite-temperature solution of Dyson equation

One-particle Green’s functions obtained from the self-consistent solution of the Dyson equation can be employed in the evaluation of spectroscopic and thermodynamic properties for both molecules and solids. However, typical acceleration techniques used in the traditional quantum chemistry self-consistent algorithms cannot be easily deployed for the Green’s function methods because of a non-convex grand potential functional and a non-idempotent density matrix. Moreover, the optimization problem can become more challenging due to the inclusion of correlation effects, changing chemical potential, and fluctuations of the number of particles. In this paper, we study acceleration techniques to target the self-consistent solution of the Dyson equation directly. We use the direct inversion in the iterative subspace (DIIS), the least-squared commutator in the iterative subspace (LCIIS), and the Krylov space accelerated inexact Newton method (KAIN). We observe that the definition of the residual has a significant impact on the convergence of the iterative procedure. Based on the Dyson equation, we generalize the concept of the commutator residual used in DIIS and LCIIS and compare it with the difference residual used in DIIS and KAIN. The commutator residuals outperform the difference residuals for all considered molecular and solid systems within both GW and GF2. For a more » number of bond-breaking problems, we found that an easily obtained high-temperature solution with effectively suppressed correlations is a very effective starting point for reaching convergence of the problematic low-temperature solutions through a sequential reduction of temperature during calculations.

« less
Authors:
 ;  ;  
Publication Date:
NSF-PAR ID:
10363554
Journal Name:
The Journal of Chemical Physics
Volume:
156
Issue:
9
Page Range or eLocation-ID:
Article No. 094101
ISSN:
0021-9606
Publisher:
American Institute of Physics
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract A one-step analysis of Anderson acceleration with general algorithmic depths is presented. The resulting residual bounds within both contractive and noncontractive settings reveal the balance between the contributions from the higher and lower order terms, which are both dependent on the success of the optimization problem solved at each step of the algorithm. The new residual bounds show the additional terms introduced by the extrapolation produce terms that are of a higher order than was previously understood. In the contractive setting these bounds sharpen previous convergence and acceleration results. The bounds rely on sufficient linear independence of the differences between consecutive residuals, rather than assumptions on the boundedness of the optimization coefficients, allowing the introduction of a theoretically sound safeguarding strategy. Several numerical tests illustrate the analysis primarily in the noncontractive setting, and demonstrate the use of the method, the safeguarding strategy and theory-based guidance on dynamic selection of the algorithmic depth, on a p-Laplace equation, a nonlinear Helmholtz equation and the steady Navier–Stokes equations with high Reynolds number in three spatial dimensions.
  2. Downscaling coarse global and regional climate models allows researchers to access weather and climate data at finer temporal and spatial resolution, but there remains a need to compare these models with empirical data sources to assess model accuracy. Here, we validate a widely used software for generating North American downscaled climate data, ClimateNA, with a novel empirical data source, 20th century weather journals kept by Admiralty Island, Alaska homesteader, Allen Hasselborg. Using Hasselborg’s journals, we calculated monthly precipitation and monthly mean of the maximum daily air temperature across the years 1926 to 1954 and compared these to ClimateNA data generated from the Hasselborg homestead location and adjacent areas. To demonstrate the utility and potential implications of this validation for other disciplines such as hydrology, we used an established regression equation to generate time series of 95% low duration flow estimates for the month of August using mean annual precipitation from ClimateNA predictions and Hasselborg data. Across 279 months, we found strong correlation between modeled and observed measurements of monthly precipitation ( ρ  = 0.74) and monthly mean of the maximum daily air temperature ( ρ  = 0.98). Monthly precipitation residuals (calculated as ClimateNA data - Hasselborg data) generally demonstrated heteroscedasticity around zero,more »but a negative trend in residual values starting during the last decade of observations may have been due to a shift to the cold-phase Pacific Decadal Oscillation. Air temperature residuals demonstrated a consistent but small positive bias, with ClimateNA tending to overestimate air temperature relative to Hasselborg’s journals. The degree of correlation between weather patterns observed at the Hasselborg homestead site and ClimateNA data extracted from spatial grid cells across the region varied by wet and dry climate years. Monthly precipitation from both data sources tended to be more similar across a larger area during wet years (mean ρ across grid cells = 0.73) compared to dry years (mean ρ across grid cells = 0.65). The time series of annual 95% low duration flow estimates for the month of August generated using ClimateNA and Hasselborg data were moderately correlated ( ρ  = 0.55). Our analysis supports previous research in other regions which also found ClimateNA to be a robust source for past climate data estimates.« less
  3. We present two algorithms to compute system-specific polarizabilities and dispersion coefficients such that required memory and computational time scale linearly with increasing number of atoms in the unit cell for large systems. The first algorithm computes the atom-in-material (AIM) static polarizability tensors, force-field polarizabilities, and C 6 , C 8 , C 9 , C 10 dispersion coefficients using the MCLF method. The second algorithm computes the AIM polarizability tensors and C 6 coefficients using the TS-SCS method. Linear-scaling computational cost is achieved using a dipole interaction cutoff length function combined with iterative methods that avoid large dense matrix multiplies and large matrix inversions. For MCLF, Richardson extrapolation of the screening increments is used. For TS-SCS, a failproof conjugate residual (FCR) algorithm is introduced that solves any linear equation system having Hermitian coefficients matrix. These algorithms have mathematically provable stable convergence that resists round-off errors. We parallelized these methods to provide rapid computation on multi-core computers. Excellent parallelization efficiencies were obtained, and adding parallel processors does not significantly increase memory requirements. This enables system-specific polarizabilities and dispersion coefficients to be readily computed for materials containing millions of atoms in the unit cell. The largest example studied herein is an icemore »crystal containing >2 million atoms in the unit cell. For this material, the FCR algorithm solved a linear equation system containing >6 million rows, 7.57 billion interacting atom pairs, 45.4 billion stored non-negligible matrix components used in each large matrix-vector multiplication, and ∼19 million unknowns per frequency point (>300 million total unknowns).« less
  4. In order to achieve a more accurate finite element (FE) model for an as-built structure, experimental data collected from the actual structure can be used to update selected parameters of the FE model. The process is known as FE model updating. This research compares the performance of two frequency-domain model updating approaches. The first approach minimizes the difference between experimental and simulated modal properties, such as natural frequencies and mode shapes. The second approach minimizes modal dynamic residuals from the generalized eigenvalue equation involving stiffness and mass matrices. Both model updating approaches are formulated as an optimization problem with selected updating parameters as optimization variables. This research also compares the performance of different optimization procedures, including a nonlinear least-square, an interior-point and an iterative linearization procedure. The comparison is conducted using a numerical example of a space frame structure. The modal dynamic residual approach shows better performance than the modal property difference approach in updating model parameters of the space frame structure.
  5. Resonant tunneling diodes (RTDs) have come full-circle in the past 10 years after their demonstration in the early 1990s as the fastest room-temperature semiconductor oscillator, displaying experimental results up to 712 GHz and fmax values exceeding 1.0 THz [1]. Now the RTD is once again the preeminent electronic oscillator above 1.0 THz and is being implemented as a coherent source [2] and a self-oscillating mixer [3], amongst other applications. This paper concerns RTD electroluminescence – an effect that has been studied very little in the past 30+ years of RTD development, and not at room temperature. We present experiments and modeling of an n-type In0.53Ga0.47As/AlAs double-barrier RTD operating as a cross-gap light emitter at ~300K. The MBE-growth stack is shown in Fig. 1(a). A 15-μm-diam-mesa device was defined by standard planar processing including a top annular ohmic contact with a 5-μm-diam pinhole in the center to couple out enough of the internal emission for accurate free-space power measurements [4]. The emission spectra have the behavior displayed in Fig. 1(b), parameterized by bias voltage (VB). The long wavelength emission edge is at  = 1684 nm - close to the In0.53Ga0.47As bandgap energy of Ug ≈ 0.75 eV at 300 K.more »The spectral peaks for VB = 2.8 and 3.0 V both occur around  = 1550 nm (h = 0.75 eV), so blue-shifted relative to the peak of the “ideal”, bulk InGaAs emission spectrum shown in Fig. 1(b) [5]. These results are consistent with the model displayed in Fig. 1(c), whereby the broad emission peak is attributed to the radiative recombination between electrons accumulated on the emitter side, and holes generated on the emitter side by interband tunneling with current density Jinter. The blue-shifted main peak is attributed to the quantum-size effect on the emitter side, which creates a radiative recombination rate RN,2 comparable to the band-edge cross-gap rate RN,1. Further support for this model is provided by the shorter wavelength and weaker emission peak shown in Fig. 1(b) around = 1148 nm. Our quantum mechanical calculations attribute this to radiative recombination RR,3 in the RTD quantum well between the electron ground-state level E1,e, and the hole level E1,h. To further test the model and estimate quantum efficiencies, we conducted optical power measurements using a large-area Ge photodiode located ≈3 mm away from the RTD pinhole, and having spectral response between 800 and 1800 nm with a peak responsivity of ≈0.85 A/W at  =1550 nm. Simultaneous I-V and L-V plots were obtained and are plotted in Fig. 2(a) with positive bias on the top contact (emitter on the bottom). The I-V curve displays a pronounced NDR region having a current peak-to-valley current ratio of 10.7 (typical for In0.53Ga0.47As RTDs). The external quantum efficiency (EQE) was calculated from EQE = e∙IP/(∙IE∙h) where IP is the photodiode dc current and IE the RTD current. The plot of EQE is shown in Fig. 2(b) where we see a very rapid rise with VB, but a maximum value (at VB= 3.0 V) of only ≈2×10-5. To extract the internal quantum efficiency (IQE), we use the expression EQE= c ∙i ∙r ≡ c∙IQE where ci, and r are the optical-coupling, electrical-injection, and radiative recombination efficiencies, respectively [6]. Our separate optical calculations yield c≈3.4×10-4 (limited primarily by the small pinhole) from which we obtain the curve of IQE plotted in Fig. 2(b) (right-hand scale). The maximum value of IQE (again at VB = 3.0 V) is 6.0%. From the implicit definition of IQE in terms of i and r given above, and the fact that the recombination efficiency in In0.53Ga0.47As is likely limited by Auger scattering, this result for IQE suggests that i might be significantly high. To estimate i, we have used the experimental total current of Fig. 2(a), the Kane two-band model of interband tunneling [7] computed in conjunction with a solution to Poisson’s equation across the entire structure, and a rate-equation model of Auger recombination on the emitter side [6] assuming a free-electron density of 2×1018 cm3. We focus on the high-bias regime above VB = 2.5 V of Fig. 2(a) where most of the interband tunneling should occur in the depletion region on the collector side [Jinter,2 in Fig. 1(c)]. And because of the high-quality of the InGaAs/AlAs heterostructure (very few traps or deep levels), most of the holes should reach the emitter side by some combination of drift, diffusion, and tunneling through the valence-band double barriers (Type-I offset) between InGaAs and AlAs. The computed interband current density Jinter is shown in Fig. 3(a) along with the total current density Jtot. At the maximum Jinter (at VB=3.0 V) of 7.4×102 A/cm2, we get i = Jinter/Jtot = 0.18, which is surprisingly high considering there is no p-type doping in the device. When combined with the Auger-limited r of 0.41 and c ≈ 3.4×10-4, we find a model value of IQE = 7.4% in good agreement with experiment. This leads to the model values for EQE plotted in Fig. 2(b) - also in good agreement with experiment. Finally, we address the high Jinter and consider a possible universal nature of the light-emission mechanism. Fig. 3(b) shows the tunneling probability T according to the Kane two-band model in the three materials, In0.53Ga0.47As, GaAs, and GaN, following our observation of a similar electroluminescence mechanism in GaN/AlN RTDs (due to strong polarization field of wurtzite structures) [8]. The expression is Tinter = (2/9)∙exp[(-2 ∙Ug 2 ∙me)/(2h∙P∙E)], where Ug is the bandgap energy, P is the valence-to-conduction-band momentum matrix element, and E is the electric field. Values for the highest calculated internal E fields for the InGaAs and GaN are also shown, indicating that Tinter in those structures approaches values of ~10-5. As shown, a GaAs RTD would require an internal field of ~6×105 V/cm, which is rarely realized in standard GaAs RTDs, perhaps explaining why there have been few if any reports of room-temperature electroluminescence in the GaAs devices. [1] E.R. Brown,et al., Appl. Phys. Lett., vol. 58, 2291, 1991. [5] S. Sze, Physics of Semiconductor Devices, 2nd Ed. 12.2.1 (Wiley, 1981). [2] M. Feiginov et al., Appl. Phys. Lett., 99, 233506, 2011. [6] L. Coldren, Diode Lasers and Photonic Integrated Circuits, (Wiley, 1995). [3] Y. Nishida et al., Nature Sci. Reports, 9, 18125, 2019. [7] E.O. Kane, J. of Appl. Phy 32, 83 (1961). [4] P. Fakhimi, et al., 2019 DRC Conference Digest. [8] T. Growden, et al., Nature Light: Science & Applications 7, 17150 (2018). [5] S. Sze, Physics of Semiconductor Devices, 2nd Ed. 12.2.1 (Wiley, 1981). [6] L. Coldren, Diode Lasers and Photonic Integrated Circuits, (Wiley, 1995). [7] E.O. Kane, J. of Appl. Phy 32, 83 (1961). [8] T. Growden, et al., Nature Light: Science & Applications 7, 17150 (2018).« less