skip to main content


Title: Limitations of cross‐ and multigenerational plasticity for marine invertebrates faced with global climate change
Abstract

Although cross generation (CGP) and multigenerational (MGP) plasticity have been identified as mechanisms of acclimation to global change, the weight of evidence indicates that parental conditioning over generations is not a panacea to rescue stress sensitivity in offspring. For many species, there were no benefits of parental conditioning. Even when improved performance was observed, this waned over time within a generation or across generations and fitness declined. CGP and MGP studies identified resilient species with stress tolerant genotypes in wild populations and selected family lines. Several bivalves possess favourable stress tolerance and phenotypically plastic traits potentially associated with genetic adaptation to life in habitats where they routinely experience temperature and/or acidification stress. These traits will be important to help ‘climate proof’ shellfish ventures. Species that are naturally stress tolerant and those that naturally experience a broad range of environmental conditions are good candidates to provide insights into the physiological and molecular mechanisms involved in CGP and MGP. It is challenging to conduct ecologically relevant global change experiments over the long times commensurate with the pace of changing climate. As a result, many studies present stressors in a shock‐type exposure at rates much faster than projected scenarios. With more gradual stressor introduction over longer experimental durations and in context with conditions species are currently acclimatized and/or adapted to, the outcomes for sensitive species might differ. We highlight the importance to understand primordial germ cell development and the timing of gametogenesis with respect to stressor exposure. Although multigenerational exposure to global change stressors currently appears limited as a universal tool to rescue species in the face of changing climate, natural proxies of future conditions (upwelling zones, CO2vents, naturally warm habitats) show that phenotypic adjustment and/or beneficial genetic selection is possible for some species, indicating complex plasticity–adaptation interactions.

 
more » « less
NSF-PAR ID:
10363595
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Global Change Biology
Volume:
26
Issue:
1
ISSN:
1354-1013
Page Range / eLocation ID:
p. 80-102
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Hayes, Loren (Ed.)
    Abstract As humans continue to alter natural habitats, many wild animals are facing novel suites of environmental stimuli. These changes, including increased human–wildlife interactions, may exert sublethal impacts on wildlife such as alterations in stress physiology and behavior. California ground squirrels (Otospermophilus beecheyi) occur in human-modified as well as more pristine environments, where they face a variety of anthropogenic and naturally occurring threats. This makes this species a valuable model for examining the effects of diverse challenges on the physiology and behavior of free-living mammals. To explore potential sublethal effects of habitat modification on O. beecheyi, we compared body masses, behaviors, and fecal glucocorticoid metabolite (FGM) levels for free-living squirrels in human-disturbed versus undisturbed habitats. Prior to these analyses, we validated the use of FGMs in this species by exposing captive O. beecheyi to pharmacological and handling challenges; both challenges produced significant increases in FGMs in the study animals. While FGM responses were repeatable within captive individuals, responses by free-living animals were more variable, perhaps reflecting a greater range of life-history traits and environmental conditions within natural populations of squirrels. Animals from our human-disturbed study site had significantly higher FGMs, significantly lower body masses, and were significantly less behaviorally reactive to humans than those from our more pristine study site. Thus, despite frequent exposure of California ground squirrels to human impacts, anthropogenic stressors appear to influence stress physiology and other phenotypic traits in this species. These findings suggest that even human-tolerant mammalian species may experience important sublethal consequences due to human modifications of natural habitats. 
    more » « less
  2. Abstract

    Environmental change is multidimensional, with local anthropogenic stressors and global climate change interacting to differentially impact populations throughout a species’ geographic range. Within species, the spatial distribution of phenotypic variation and its causes (i.e., local adaptation or plasticity) will determine species’ adaptive capacity to respond to a changing environment. However, comparatively less is known about the spatial scale of adaptive differentiation among populations and how patterns of local adaptation might drive vulnerability to global change stressors. To test whether fine‐scale (2–12 km) mosaics of environmental stress can cause adaptive differentiation in a marine foundation species, eelgrass (Zostera marina), we conducted a three‐way reciprocal transplant experiment spanning the length of Tomales Bay, CA. Our results revealed strong home‐site advantage in growth and survival for all three populations. In subsequent common garden experiments and feeding assays, we showed that countergradients in temperature, light availability, and grazing pressure from an introduced herbivore contribute to differential performance among populations consistent with local adaptation. Our findings highlight how local‐scale mosaics in environmental stressors can increase phenotypic variation among neighboring populations, potentially increasing species resilience to future global change. More specifically, we identified a range‐center eelgrass population that is pre‐adapted to extremely warm temperatures similar to those experienced by low‐latitude range‐edge populations of eelgrass, demonstrating how reservoirs of heat‐tolerant phenotypes may already exist throughout a species range. Future work on predicting species resilience to global change should incorporate potential buffering effects of local‐scale population differentiation and promote a phenotypic management approach to species conservation.

     
    more » « less
  3. Abstract

    Transgenerational plasticity (TGP) is increasingly recognized as a mechanism by which organisms can respond to environments that change across generations. Although recent empirical and theoretical studies have explored conditions under which TGP is predicted to evolve, it is still unclear whether the effects of the parental environment will remain beyond the offspring generation. Using a small cyprinodontid fish, we explored multigenerational thermal TGP to address two related questions. First (experiment 1), does the strength of TGP decline or accumulate across multiple generations? Second (experiment 2), how does the experience of a temperature novel to both parents and offspring affect the strength of TGP? In the first experiment, we found a significant interaction between F1 and F2 temperatures and juvenile growth, but no effect of egg diameter. The strength of TGP between F0 and F1 generations was similar in both experiments but declined in subsequent generations. Further, experience of a novel temperature accelerated the decline. This pattern, although similar to that found in other species, is certainly not universally observed, suggesting that theoretical and empirical effort is needed to understand the multigenerational dynamics of TGP.

     
    more » « less
  4. Abstract

    In a rapidly changing world, phenotypic plasticity may be a critical mechanism allowing populations to rapidly acclimate when faced with novel anthropogenic stressors. Theory predicts that if exposure to anthropogenic stress is heterogeneous, plasticity should be maintained as it allows organisms to avoid unnecessary expression of costly traits (i.e., phenotypic costs) when stressors are absent. Conversely, if exposure to stressors becomes constant, costs or limits of plasticity may lead to evolutionary trait canalization (i.e., genetic assimilation). While these concepts are well‐established in theory, few studies have examined whether these factors explain patterns of plasticity in natural populations facing anthropogenic stress. Using wild populations of wood frogs that vary in plasticity in tolerance to pesticides, the goal of this study was to evaluate the environmental conditions under which plasticity is expected to be advantageous or detrimental. We found that when pesticides were absent, more plastic populations exhibited lower pesticide tolerance and were more fit than less plastic populations, likely avoiding the cost of expressing high tolerance when it was not necessary. Contrary to our predictions, when pesticides were present, more plastic populations were as fit as less plastic populations, showing no signs of costs or limits of plasticity. Amidst unprecedented global change, understanding the factors shaping the evolution of plasticity will become increasingly important.

     
    more » « less
  5. Abstract

    Adaptive evolution and phenotypic plasticity will fuel resilience in the geologically unprecedented warming and acidification of the earth’s oceans, however, we have much to learn about the interactions and costs of these mechanisms of resilience. Here, using 20 generations of experimental evolution followed by three generations of reciprocal transplants, we investigated the relationship between adaptation and plasticity in the marine copepod,Acartia tonsa, in future global change conditions (high temperature and high CO2). We found parallel adaptation to global change conditions in genes related to stress response, gene expression regulation, actin regulation, developmental processes, and energy production. However, reciprocal transplantation showed that adaptation resulted in a loss of transcriptional plasticity, reduced fecundity, and reduced population growth when global change-adapted animals were returned to ambient conditions or reared in low food conditions. However, after three successive transplant generations, global change-adapted animals were able to match the ambient-adaptive transcriptional profile. Concurrent changes in allele frequencies and erosion of nucleotide diversity suggest that this recovery occurred via adaptation back to ancestral conditions. These results demonstrate that while plasticity facilitated initial survival in global change conditions, it eroded after 20 generations as populations adapted, limiting resilience to new stressors and previously benign environments.

     
    more » « less