Currently soft robots primarily rely on pneumatics and geometrical asymmetry to achieve locomotion, which limits their working range, versatility, and other untethered functionalities. In this paper, we introduce a novel approach to achieve locomotion for soft robots through dynamically tunable friction to address these challenges, which is achieved by subsurface stiffness modulation (SSM) of a stimuli-responsive component within composite structures. To demonstrate this, we design and fabricate an elastomeric pad made of polydimethylsiloxane (PDMS), which is embedded with a spiral channel filled with a low melting point alloy (LMPA). Once the LMPA strip is melted upon Joule heating, the compliance of the composite structure increases and the friction between the composite surface and the opposing surface increases. A series of experiments and finite element analysis (FEA) have been performed to characterize the frictional behavior of these composite pads and elucidate the underlying physics dominating the tunable friction. We also demonstrate that when these composite structures are properly integrated into soft crawling robots inspired by inchworms and earthworms, the differences in friction of the two ends of these robots through SSM can potentially be used to generate translational locomotion for untethered crawling robots.
Recently, a novel concept to realize dynamically tunable dry adhesion via subsurface stiffness modulation (SSM) in a composite core–shell structure has been introduced and demonstrated for gripping and release of objects. Here, a variant form of the composite core–shell design is proposed to significantly improve the performance of dynamically tunable dry adhesion in terms of activation time and activation voltage. Specifically, composite pillars with an embedded microfluidic channel filled with a low melting point alloy (LMPA) are fabricated, and the adhesion of the pillars is characterized as a function of LMPA state: either melted or solid. The effects of the thickness and in‐plane pattern of the LMPA channel, as well as the depth at which it is embedded on tunable adhesion are investigated. Experiments show that the effective adhesion strength can be reduced up to 50%, equivalent to a 2× change in dry adhesion when the LMPA is melted. Finite element analysis of the stress distribution change under SSM shows that the experimentally observed tunable adhesion is primarily due to stiffness change close to the interface. In addition, two technology demonstrations of composite pillars picking and releasing objects with fast activation (≈1 s) and low activation voltages (≈1 V) are included.
more » « less- NSF-PAR ID:
- 10363601
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Advanced Materials Interfaces
- Volume:
- 9
- Issue:
- 7
- ISSN:
- 2196-7350
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Tunable dry adhesion has a range of applications, including transfer printing, climbing robots, and gripping in automated manufacturing processes. Here, a novel concept to achieve dynamically tunable dry adhesion via modulation of the stiffness of subsurface mechanical elements is introduced and demonstrated. A composite post structure, consisting of an elastomer shell and a core with a stiffness that can be tuned via application of electrical voltage, is fabricated. In the nonactivated state, the core is stiff and the effective adhesion strength between the composite post and contact surface is high. Activation of the core via application of electrical voltage reduces the stiffness of the core, resulting in a change in the stress distribution and driving force for delamination at the interface and, thus a reduction in the effective adhesion strength. The adhesion of composite posts with a range of dimensions is characterized and activation of the core is shown to reduce the adhesion by as much as a factor of 6. The experimentally observed reduction in adhesion is primarily due to the change in stiffness of the core. However, the activation of the core also results in heating of the interface and this plays a secondary role in the adhesion change.
-
Tunable dry adhesion is a crucial mechanism in compliant manipulation. The gripping force can be controlled by reversibly varying the physical properties (e.g., stiffness) of the composite via external stimuli. The maximal gripping force Fmaxand its tunability depend on, among other factors, the stress distribution on the gripping interface and its fracture dynamics (during detaching), which in turn are determined by the composite microstructure. Here, we present a computational framework for the modeling and design of a class of binary smart composites containing a porous low-melting-point alloy (LMPA) phase and a polymer phase, in order to achieve desirable dynamically tunable dry adhesion. We employ spatial correlation functions to quantify, model, and represent the complex bi-continuous microstructure of the composites, from which a wide spectrum of realistic virtual 3D composite microstructures can be generated using stochastic optimization. A recently developed volume-compensated lattice-particle method is then employed to model the dynamic interfacial fracture process, where the gripper is detached from the object, to compute Fmaxfor different composite microstructures. We focus on the interface defect tuning mechanism for dry adhesion tuning enabled by the composite, and find that for an optimal microstructure among the ones studied here, a tenfold dynamic tuning of Fmaxbefore and after the thermal expansion of the LMPA phase can be achieved. Our computational results can provide valuable guidance for experimental fabrication of the LMPA–polymer composites.
-
Herein, a new class of robust bicontinuous elastomer–metal foam composites with highly tunable mechanical stiffness is proposed, fabricated, characterized, and demonstrated. The smart composite is a bicontinuous network of two foams, one metallic made of a low melting point alloy (LMPA) and the other elastomeric made of polydimethylsiloxane (PDMS). The stiffness of the composite can be tuned by inducing phase changes in its LMPA component. Below the melting point of the LMPA, Young's modulus of the smart composites is ≈1 GPa, whereas above the melting point of the LMPA it is ≈1 MPa. Thus, a sharp stiffness change of ≈1000× can be realized through the proposed bicontinuous foam composite structure, which is higher than all available robust smart composites. Effective medium theory is also used to predict the Young's modulus of the bicontinuous smart composites, which generates reasonable agreement with experimentally measured Young's modulus of the smart composites. Finally, the use of these smart materials as a smart joint in a robotic arm is also demonstrated.
-
null (Ed.)Abstract Biomimetic scales provide a convenient template to tailor the bending stiffness of the underlying slender substrate due to their mutual sliding after engagement. Scale stiffness can therefore directly impact the substrate behavior, opening a potential avenue for substrate stiffness tunability. Here, we have developed a biomimetic beam, which is covered by tunable stiffness scales. Scale tunability is achieved by specially designed plate like scales consisting of layers of low melting point alloy (LMPA) phase change materials fully enclosed inside a soft polymer. These composite scales can transition between stiff and soft states by straddling the temperatures across LMPA melting points thereby drastically altering stiffness. We experimentally analyze the bending behavior of biomimetic beams covered with tunable stiffness scales of two architectures—one with single enclosure of LMPA and one with two enclosures of different melting point LMPAs. These architectures provide a continuous stiffness change of the underlying substrate post engagement, controlled by the operating temperature. We characterize this response using three-point bending experiments at various temperature profiles. Our results demonstrate for the first time, the pronounced and reversible tunability in the bending behavior of biomimetic scale covered beam, which are strongly dependent on the scale material and architecture. Particularly, it is shown that the bending stiffness of the biomimetic scale covered beam can be actively and reversibly tuned by a factor of up to 7. The developed biomimetic beam has applications in soft robotic grippers, smart segmented armors, deployable structures and soft swimming robots.more » « less