skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, May 23 until 2:00 AM ET on Friday, May 24 due to maintenance. We apologize for the inconvenience.


Title: Magnetic fields in the formation of the first stars – II. Results
ABSTRACT

Beginning with cosmological initial conditions at z = 100, we simulate the effects of magnetic fields on the formation of Population III stars and compare our results with the predictions of Paper I. We use gadget-2 to follow the evolution of the system while the field is weak. We introduce a new method for treating kinematic fields by tracking the evolution of the deformation tensor. The growth rate in this stage of the simulation is lower than expected for diffuse astrophysical plasmas, which have a very low resistivity (high magnetic Prandtl number); we attribute this to the large numerical resistivity in simulations, corresponding to a magnetic Prandtl number of order unity. When the magnetic field begins to be dynamically significant in the core of the minihalo at z = 27, we map it on to a uniform grid and follow the evolution in an adaptive mesh refinement, MHD simulation in orion2. The non-linear evolution of the field in the orion2 simulation violates flux-freezing and is consistent with the theory proposed by Xu & Lazarian. The fields approach equipartition with kinetic energy at densities ∼1010–1012 cm−3. When the same calculation is carried out in orion2 with no magnetic fields, several protostars form, ranging in mass from ∼1 to 30 M⊙; with magnetic fields, only a single ∼30 M⊙ protostar forms by the end of the simulation. Magnetic fields thus suppress the formation of low-mass Pop III stars, yielding a top-heavy Pop III initial mass function and contributing to the absence of observed Pop III stars.

 
more » « less
NSF-PAR ID:
10363615
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
511
Issue:
4
ISSN:
0035-8711
Page Range / eLocation ID:
p. 5042-5069
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT

    Molecular hydrogen allows cooling in primordial gas, facilitating its collapse into Population III stars within primordial halos. Lyman–Werner (LW) radiation from these stars can escape the halo and delay further star formation by destroying H2 in other halos. As cosmological simulations show that increasing the background LW field strength increases the average halo mass required for star formation, we perform follow-up simulations of selected halos to investigate the knock-on effects this has on the Population III IMF. We follow 5 halos for each of the J21  = 0, 0.01, and 0.1 LW field strengths, resolving the pre-stellar core density of 10−6 g cm−3 (1018 cm−3) before inserting sink particles and following the fragmentation behaviour for hundreds of years further. We find that the mass accreted onto sinks by the end of the simulations is proportional to the mass within the ∼10−2 pc molecular core, which is not correlated to the initial mass of the halo. As such, the IMFs for masses above the brown dwarf limit show little dependence on the LW strength, although they do show variance in the number of low-mass clumps formed. As the range of background LW field strengths tested here covers the most likely values from literature, we conclude that the IMF for so-called Pop III.2 stars is not significantly different from the initial population of Pop III.1 stars. The primordial IMF therefore likely remains unchanged until the formation of the next generation of Population II stars.

     
    more » « less
  2. ABSTRACT

    We study a suite of extremely high-resolution cosmological Feedback in Realistic Environments simulations of dwarf galaxies ($M_{\rm halo} \lesssim 10^{10}\rm \, M_{\odot }$), run to z = 0 with $30\, \mathrm{M}_{\odot }$ resolution, sufficient (for the first time) to resolve the internal structure of individual supernovae remnants within the cooling radius. Every halo with $M_{\rm halo} \gtrsim 10^{8.6}\, \mathrm{M}_{\odot }$ is populated by a resolved stellar galaxy, suggesting very low-mass dwarfs may be ubiquitous in the field. Our ultra-faint dwarfs (UFDs; $M_{\ast }\lt 10^{5}\, \mathrm{M}_{\odot }$) have their star formation (SF) truncated early (z ≳ 2), likely by reionization, while classical dwarfs ($M_{\ast }\gt 10^{5}\, \mathrm{M}_{\odot }$) continue forming stars to z < 0.5. The systems have bursty star formation histories, forming most of their stars in periods of elevated SF strongly clustered in both space and time. This allows our dwarf with M*/Mhalo > 10−4 to form a dark matter core ${\gt}200\rm \, pc$, while lower mass UFDs exhibit cusps down to ${\lesssim}100\rm \, pc$, as expected from energetic arguments. Our dwarfs with $M_{\ast }\gt 10^{4}\, \mathrm{M}_{\odot }$ have half-mass radii (R1/2) in agreement with Local Group (LG) dwarfs (dynamical mass versus R1/2 and stellar rotation also resemble observations). The lowest mass UFDs are below surface brightness limits of current surveys but are potentially visible in next-generation surveys (e.g. LSST). The stellar metallicities are lower than in LG dwarfs; this may reflect pre-enrichment of the LG by the massive hosts or Pop-III stars. Consistency with lower resolution studies implies that our simulations are numerically robust (for a given physical model).

     
    more » « less
  3. ABSTRACT

    The formation of the first stars marks a watershed moment in the history of our Universe. As the first luminous structures, these stars (also known as Population III, or Pop III stars) seed the first galaxies and begin the process of reionization. We construct an analytic model to self-consistently trace the formation of Pop III stars inside minihaloes in the presence of the fluctuating ultraviolet background, relic dark matter (DM)-baryon relative velocities from the early universe, and an X-ray background, which largely work to suppress cooling of gas and delay the formation of this first generation of stars. We demonstrate the utility of this framework in a semi-analytic model for early star formation that also follows the transition between Pop III and Pop II star formation inside these haloes. Using our new prescription for the criteria allowing Pop III star formation, we follow a population of DM haloes from z = 50 through z = 6 and examine the global star formation history, finding that each process defines its own key epoch: (i) the stream velocity dominates at the highest redshifts (z ≳ 30), (ii) the UV background sets the tone at intermediate times (30 ≳ z ≳ 15), and (iii) X-rays control the end of Pop III star formation at the latest times (z ≲ 15). In all of our models, Pop III stars continue to form down to z ∼ 7–10, when their supernovae will be potentially observable with forthcoming instruments. Finally, we identify the signatures of variations in the Pop III physics in the global 21-cm spin–flip signal of atomic hydrogen.

     
    more » « less
  4. ABSTRACT The cosmic near-infrared background (NIRB) offers a powerful integral probe of radiative processes at different cosmic epochs, including the pre-reionization era when metal-free, Population III (Pop III) stars first formed. While the radiation from metal-enriched, Population II (Pop II) stars likely dominates the contribution to the observed NIRB from the reionization era, Pop III stars – if formed efficiently – might leave characteristic imprints on the NIRB, thanks to their strong Lyα emission. Using a physically motivated model of first star formation, we provide an analysis of the NIRB mean spectrum and anisotropy contributed by stellar populations at z > 5. We find that in circumstances where massive Pop III stars persistently form in molecular cooling haloes at a rate of a few times $10^{-3}\, \mathrm{ M}_\odot \ \mathrm{yr}^{-1}$, before being suppressed towards the epoch of reionization (EoR) by the accumulated Lyman–Werner background, a unique spectral signature shows up redward of $1\, \mu$m in the observed NIRB spectrum sourced by galaxies at z > 5. While the detailed shape and amplitude of the spectral signature depend on various factors including the star formation histories, initial mass function, LyC escape fraction and so forth, the most interesting scenarios with efficient Pop III star formation are within the reach of forthcoming facilities, such as the Spectro-Photometer for the History of the Universe, Epoch of Reionization, and Ices Explorer. As a result, new constraints on the abundance and formation history of Pop III stars at high redshifts will be available through precise measurements of the NIRB in the next few years. 
    more » « less
  5. null (Ed.)
    ABSTRACT Understanding the evolution of self-gravitating, isothermal, magnetized gas is crucial for star formation, as these physical processes have been postulated to set the initial mass function (IMF). We present a suite of isothermal magnetohydrodynamic (MHD) simulations using the gizmo code that follow the formation of individual stars in giant molecular clouds (GMCs), spanning a range of Mach numbers found in observed GMCs ($\mathcal {M} \sim 10\!-\!50$). As in past works, the mean and median stellar masses are sensitive to numerical resolution, because they are sensitive to low-mass stars that contribute a vanishing fraction of the overall stellar mass. The mass-weighted median stellar mass M50 becomes insensitive to resolution once turbulent fragmentation is well resolved. Without imposing Larson-like scaling laws, our simulations find $M_\mathrm{50} \,\, \buildrel\propto \over \sim \,\,M_\mathrm{0} \mathcal {M}^{-3} \alpha _\mathrm{turb}\, \mathrm{SFE}^{1/3}$ for GMC mass M0, sonic Mach number $\mathcal {M}$, virial parameter αturb, and star formation efficiency SFE = M⋆/M0. This fit agrees well with previous IMF results from the ramses, orion2, and sphng codes. Although M50 has no significant dependence on the magnetic field strength at the cloud scale, MHD is necessary to prevent a fragmentation cascade that results in non-convergent stellar masses. For initial conditions and SFE similar to star-forming GMCs in our Galaxy, we predict M50 to be $\gt 20 \, \mathrm{M}_{\odot }$, an order of magnitude larger than observed ($\sim 2 \, \mathrm{M}_\odot$), together with an excess of brown dwarfs. Moreover, M50 is sensitive to initial cloud properties and evolves strongly in time within a given cloud, predicting much larger IMF variations than are observationally allowed. We conclude that physics beyond MHD turbulence and gravity are necessary ingredients for the IMF. 
    more » « less