skip to main content


Title: Unchartered waters: Climate change likely to intensify infectious disease outbreaks causing mass mortality events in marine mammals
Abstract

Infectious disease emergence has increased significantly over the last 30 years, with mass mortality events (MMEs) associated with epizootics becoming increasingly common. Factors influencing these events have been widely studied in terrestrial systems, but remain relatively unexplored in marine mammals. Infectious disease‐induced MMEs (ID MMEs) have not been reported ubiquitously among marine mammal species, indicating that intrinsic (host) and/or extrinsic (environmental) ecological factors may influence this heterogeneity. We assess the occurrence of ID MMEs (1955–2018) across extant marine mammals (n = 129) in relation to key life‐history characteristics (sociality, trophic level, habitat breadth) and environmental variables (season, sea surface temperature [SST] anomalies, El Niño occurrence). Our results show that ID MMEs have been reported in 14% of marine mammal species (95% CI 9%–21%), with 72% (n = 36; 95% CI 56%–84%) of these events caused predominantly by viruses, primarily morbillivirus and influenza A. Bacterial pathogens caused 25% (95% CI 14%–41%) of MMEs, with only one being the result of a protozoan pathogen. Overall, virus‐induced MMEs involved a greater number of fatalities per event compared to other pathogens. No association was detected between the occurrence of ID MMEs and host characteristics, such as sociality or trophic level, but ID MMEs did occur more frequently in semiaquatic species (pinnipeds) compared to obligate ocean dwellers (cetaceans; χ2 = 9.6,p = .002). In contrast, extrinsic factors significantly influenced ID MMEs, with seasonality linked to frequency (χ2 = 19.85,p = .0002) and severity of these events, and global yearly SST anomalies positively correlated with their temporal occurrence (Z = 3.43,p = 2.7e‐04). No significant association was identified between El Niño and ID MME occurrence (Z = 0.28,p = .81). With climate change forecasted to increase SSTs and the frequency of extreme seasonal weather events, epizootics causing MMEs are likely to intensify with significant consequences for marine mammal survival.

 
more » « less
NSF-PAR ID:
10363641
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Global Change Biology
Volume:
26
Issue:
8
ISSN:
1354-1013
Page Range / eLocation ID:
p. 4284-4301
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Various aspects of sociality in mammals (e.g., dyadic connectedness) are linked with measures of biological fitness (e.g., longevity). How within- and between-individual variation in relevant social traits arises in uncontrolled wild populations is challenging to determine but is crucial for understanding constraints on the evolution of sociality. We use an advanced statistical method, known as the ‘animal model’, which incorporates pedigree information, to look at social, genetic, and environmental influences on sociality in a long-lived wild primate. We leverage a longitudinal database spanning 20 years of observation on individually recognized white-faced capuchin monkeys (Cebus capucinus imitator), with a multi-generational pedigree. We analyze two measures of spatial association, using repeat sampling of 376 individuals (mean: 53.5 months per subject, range: 6–185 months per subject). Conditioned on the effects of age, sex, group size, seasonality, and El Niño–Southern Oscillation phases, we show low to moderate long-term repeatability (across years) of the proportion of time spent social (posterior mode [95% Highest Posterior Density interval]: 0.207 [0.169, 0.265]) and of average number of partners (0.144 [0.113, 0.181]) (latent scale). Most of this long-term repeatability could be explained by modest heritability (h2social: 0.152 [0.094, 0.207];h2partners: 0.113 [0.076, 0.149]) with small long-term maternal effects (m2social: 0.000 [0.000, 0.045];m2partners: 0.000 [0.000, 0.041]). Our models capture the majority of variance in our behavioral traits, with much of the variance explained by temporally changing factors, such as group of residence, highlighting potential limits to the evolvability of our trait due to social and environmental constraints.

     
    more » « less
  2. Abstract

    Coral oxygen isotopes (δ18O) from the central equatorial Pacific provide monthly resolved records of El Niño‐Southern Oscillation activity over past centuries to millennia. However, calibration studies usingin situdata to assess the relative contributions of warming and freshening to coral δ18O records are exceedingly rare. Furthermore, the fidelity of coral δ18O records under the most severe thermal stress events is difficult to assess. Here, we present six coral δ18O records andin situtemperature, salinity, and seawater δ18O data from Kiritimati Island (2°N, 157°W) spanning the very strong 2015/16 El Niño event. Local sea surface temperature (SST) anomalies of +2.4 ± 0.4°C and seawater δ18O anomalies of −0.19 ± 0.02‰ contribute to the observed coral δ18O anomalies of −0.58 ± 0.05‰, consistent with a ∼70% contribution from SST and ∼30% from seawater δ18O. Our results demonstrate that Kiritimati coral δ18O records can provide reliable reconstructions even during the largest class of El Niño events.

     
    more » « less
  3. The geographical ranges of many mammals and their associated parasites are dynamic. Comprehensive documentation of these communities over time provides a foundation for interpreting how changing environmental conditions, driven by accelerating climate change, other anthropogenic disturbances, and natural events, may influence host-parasite interactions. Fleas (Order Siphonaptera) are obligate, hematophagous parasites of birds and mammals with medical interest because of their role in transmitting pathogens. From 2016 to 2019, we sampled the small mammal and associated flea communities in El Malpais National Conservation Area (El Malpais) in Cibola County, New Mexico. Among 898 mammalian specimens, 925 fleas representing 29 species were collected from 18 host species. Pleochaetis exilis was the most abundant flea species, composing 27% of the total fleas collected, whereas Aetheca wagneri was the most prevalent flea species, parasitizing 8% of the community sampled. Across a total of 284 hosts recorded with fleas, A. wagneri, Malaraeus eremicus, and Peromyscopsylla hesperomys adelpha parasitized the most host species (n = 6 each). Onychomys leucogaster (Wied-Neuwied, 1841), the northern grasshopper mouse, a rodent highly implicated in plague dynamics, was host for the highest number of flea species (n = 15), followed by Peromyscus truei (Shufeldt, 1885) (n = 10). Our aims are to (a) describe the flea-mammal assemblage of a central New Mexico site, creating a baseline for diversity against which changing patterns of association can be assessed over time; (b) identify previously unrecognized host associations; and (c) examine infestation parameters, including the relationships of flea prevalence and mean abundance to host sex, host abundance, and seasonality. As such, our study exemplifies the Documentation and Assessment phases of the DAMA protocol (Document, Assess, Monitor, Act), a central component of exploring distribution and diversity of complex pathogen-host communities across space and time that are essential to a proactive understanding of emerging disease. 
    more » « less
  4. Abstract

    The spatial organization of a population can influence the spread of information, behaviour and pathogens. Group territory size and territory overlap and components of spatial organization, provide key information as these metrics may be indicators of habitat quality, resource dispersion, contact rates and environmental risk (e.g. indirectly transmitted pathogens). Furthermore, sociality and behaviour can also shape space use, and subsequently, how space use and habitat quality together impact demography.

    Our study aims to identify factors shaping the spatial organization of wildlife populations and assess the impact of epizootics on space use. We further aim to explore the mechanisms by which disease perturbations could cause changes in spatial organization.

    Here we assessed the seasonal spatial organization of Serengeti lions and Yellowstone wolves at the group level. We use network analysis to describe spatial organization and connectivity of social groups. We then examine the factors predicting mean territory size and mean territory overlap for each population using generalized additive models.

    We demonstrate that lions and wolves were similar in that group‐level factors, such as number of groups and shaped spatial organization more than population‐level factors, such as population density. Factors shaping territory size were slightly different than factors shaping territory overlap; for example, wolf pack size was an important predictor of territory overlap, but not territory size. Lion spatial networks were more highly connected, while wolf spatial networks varied seasonally. We found that resource dispersion may be more important for driving territory size and overlap for wolves than for lions. Additionally, canine distemper epizootics may have altered lion spatial organization, highlighting the importance of including infectious disease epizootics in studies of behavioural and movement ecology.

    We provide insight about when we might expect to observe the impacts of resource dispersion, disease perturbations, and other ecological factors on spatial organization. Our work highlights the importance of monitoring and managing social carnivore populations at the group level. Future research should elucidate the complex relationships between demographics, social and spatial structure, abiotic and biotic conditions and pathogen infections.

     
    more » « less
  5. Abstract

    Anthropogenic stressors from climate change can affect individual species, community structure, and ecosystem function. Marine heatwaves (MHWs) are intense thermal anomalies where water temperature is significantly elevated for five or more days. Climate projections suggest an increase in the frequency and severity of MHWs in the coming decades. While there is evidence that marine protected areas (MPAs) may be able to buffer individual species from climate impacts, there is not sufficient evidence to support the idea that MPAs can mitigate large-scale changes in marine communities in response to MHWs. California experienced an intense MHW and subsequent El Niño Southern Oscillation event from 2014 to 2016. We sought to examine changes in rocky reef fish communities at four MPAs and associated reference sites in relation to the MHW. We observed a decline in taxonomic diversity and a profound shift in trophic diversity inside and outside MPAs following the MHW. However, MPAs seemed to dampen the loss of trophic diversity and in the four years following the MHW, taxonomic diversity recovered 75% faster in the MPAs compared to reference sites. Our results suggest that MPAs may contribute to long-term resilience of nearshore fish communities through both resistance to change and recovery from warming events.

     
    more » « less