skip to main content


Title: Electronic relaxation of photoexcited open and closed shell adsorbates on semiconductors: Ag and Ag 2 on TiO 2

A theoretical treatment based on the equations of motion of an electronic reduced density matrix, and related computational modeling, is used to describe and calculate relaxation times for nanostructured TiO2(110) surfaces, here for Ag and Ag2adsorbates. The theoretical treatment deals with the preparation of a photoexcited system under two different conditions, by steady light absorption with a cutoff and by a light pulse, and describes the following relaxation of electronic densities. On the computational modeling, results are presented for electronic density of states, light absorbance, and relaxation dynamics, comparing results for Ag and Ag2adsorbates. The aim of this work is to provide insight on the dynamics and magnitude of relaxation rates for a surface with adsorbed open- and closed-shell Ag species to determine whether the advantages in using them to enhance light absorbance remain valid in the presence of charge density relaxation. Different behaviors can be expected depending on whether the adsorbate particles (Ag metal clusters in our present choice) have electronic open-shell or closed-shell structures. Calculated electron and hole lifetimes are given for pure TiO2(110), Ag/TiO2(110), and Ag2/TiO2(110). The present results, while limited to chosen structures and photon wavelengths, show that relaxation rates are noticeably different for electrons and holes, but comparable in magnitude for pure and adsorbate surfaces. Overall, the introduction of the adsorbates does not lead to rapid loss of charge carriers, while they give large increases in light absorption. This appears to be advantageous for applications to photocatalysis.

 
more » « less
NSF-PAR ID:
10363723
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
American Institute of Physics
Date Published:
Journal Name:
The Journal of Chemical Physics
Volume:
156
Issue:
10
ISSN:
0021-9606
Page Range / eLocation ID:
Article No. 104705
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Metal clusters with 10 to 100 atoms supported by a solid surface show electronic structure typical of molecules and require ab initio treatments starting from their atomic structure, and they also can display collective electronic phenomena similar to plasmons in metal solids. We have employed ab initio electronic structure results from two different density functionals (PBE and the hybrid HSE06) and a reduced density matrix treatment of the dissipative photodynamics to calculate light absorbance by the large Ag clusters Ag N , N = 33, 37(open shell) and N = 32, 34 (closed shell), adsorbed at the Si(111) surface of a slab, and forming nanostructured surfaces. Results on light absorption are quite different for the two functionals, and are presented here for light absorbances using orbitals and energies from the hybrid functional giving correct energy band gaps. Absorption of Ag clusters on Si increases light absorbance versus photon energy by large percentages, with peak increases found in regions of photon energies corresponding to localized plasmons. The present metal clusters are large enough to allow for modelling with continuum dielectric treatments of their medium. A mesoscopic Drude–Lorentz model is presented in a version suitable for the present structures, and provides an interpretation of our results. The calculated range of plasmon energies overlaps with the range of solar photon energies, making the present structures and properties relevant to applications to solar photoabsorption and photocatalysis. 
    more » « less
  2. Abstract

    A detailed understanding of the dissociation of O2molecules on metal surfaces induced by various excitation sources, electrons/holes, light, and localized surface plasmons, is crucial not only for controlling the reactivity of oxidation reactions but also for developing various oxidation catalysts. The necessity of mechanistic studies at the single‐molecule level is increasingly important for understanding interfacial interactions between O2molecules and metal surfaces and to improve the reaction efficiency. We review single‐molecule studies of O2dissociation on Ag(110) induced by various excitation sources using a scanning tunneling microscope (STM). The comprehensive studies based on the STM and density functional theory calculations provide fundamental insights into the excitation pathway for the dissociation reaction.

     
    more » « less
  3. Abstract

    Kohn–Sham density functional theory (DFT)‐based searches for hypothetical catalysts are too computationally demanding for wide searches through diverse materials space. Here, the accuracy of computational alchemy schemes on carbides, nitrides, and oxides is assessed. With a single set of reference DFT calculations, computational alchemy approximates adsorbate binding energies (BEs) on a large number of hypothetical catalysts surfaces with negligible computational cost. Analogous to previous studies on metal alloys, computational alchemy predicts adsorbate BEs on rocksalt TiC(111), TiN(100), and TiO(100) materials, which have no bandgap, in close agreement with DFT results (with mean unsigned errors up to 0.33 eV). In contrast, it is found that semiconducting systems such as rutile TiO2(110), rutile SnO2(110), and rocksalt ZnO(100) can present more significant challenges. This work identifies these challenges being linked to the density of states at the Fermi level and by adding Pt dopants in the surface layer of TiO2, it is shown that computational alchemy can become more reliable with non‐transition metal systems. This remedy provides insight that promotes computational alchemy for broad searches for catalyst active sites through materials space beyond transition metal alloys.

     
    more » « less
  4. Abstract

    Nanostructured dielectric overlayers can be used to increase light absorption in nanometer-thin films used for various optoelectronic applications. Here, the self-assembly of a close-packed monolayer of polystyrene nanospheres is used to template a core–shell polystyrene-TiO2light-concentrating monolithic structure. This is enabled by the growth of TiO2at temperatures below the polystyrene glass-transition temperature via atomic layer deposition. The result is a monolithic, tailorable nanostructured overlayer fabricated by simple chemical methods. The design of this monolith can be tailored to generate significant absorption increases in thin film light absorbers. Finite-difference, time domain simulations are used to explore the design polystyrene-TiO2core–shell monoliths that maximize light absorption in a 40 nm GaAs-on-Si substrate as a model for a photoconductive antenna THz emitter. An optimized core–shell monolith structure generated a greater than 60-fold increase of light absorption at a single wavelength in the GaAs layer of the simulated model device.

     
    more » « less
  5. Efficient charge separation and transportation are key factors that determine the photoelectrochemical (PEC) water‐splitting efficiency. Here, a simultaneous enhancement of charge separation and hole transportation on the basis of ferroelectric polarization in TiO2–SrTiO3core–shell nanowires (NWs) is reported. The SrTiO3shell with controllable thicknesses generates a considerable spontaneous polarization, which effectively tunes the electrical band bending of TiO2. Combined with its intrinsically high charge mobility, the ferroelectric SrTiO3thin shell significantly improves the charge‐separation efficiency (ηseparation) with minimized influence on the hole‐migration property of TiO2photoelectrodes, leading to a drastically increased photocurrent density (Jph). Specifically, the 10 nm‐thick SrTiO3shell yields the highestJphand ηseparationof 1.43 mA cm−2and 87.7% at 1.23 V versus reversible hydrogen electrode, respectively, corresponding to 83% and 79% improvements compared with those of pristine TiO2NWs. The PEC performance can be further manipulated by thermal treatment, and the control of SrTiO3film thicknesses and electric poling directions. This work suggests a material with combined ferroelectric and semiconducting features could be a promising solution for advancing PEC systems by concurrently promoting the charge‐separation and hole‐transportation properties.

     
    more » « less