skip to main content

Title: TESS Hunt for Young and Maturing Exoplanets (THYME). VI. An 11 Myr Giant Planet Transiting a Very-low-mass Star in Lower Centaurus Crux

Mature super-Earths and sub-Neptunes are predicted to be ≃ Jovian radius when younger than 10 Myr. Thus, we expect to find 5–15Rplanets around young stars even if their older counterparts harbor none. We report the discovery and validation of TOI 1227b, a 0.85 ± 0.05RJ(9.5R) planet transiting a very-low-mass star (0.170 ± 0.015M) every 27.4 days. TOI 1227's kinematics and strong lithium absorption confirm that it is a member of a previously discovered subgroup in the Lower Centaurus Crux OB association, which we designate the Musca group. We derive an age of 11 ± 2 Myr for Musca, based on lithium, rotation, and the color–magnitude diagram of Musca members. The TESS data and ground-based follow-up show a deep (2.5%) transit. We use multiwavelength transit observations and radial velocities from the IGRINS spectrograph to validate the signal as planetary in nature, and we obtain an upper limit on the planet mass of ≃0.5MJ. Because such large planets are exceptionally rare around mature low-mass stars, we suggest that TOI 1227b is still contracting and will eventually turn into one of the more common <5Rplanets.

more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astronomical Journal
Medium: X Size: Article No. 156
["Article No. 156"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We present the discovery of TOI-5205b, a transiting Jovian planet orbiting a solar metallicity M4V star, which was discovered using Transiting Exoplanet Survey Satellite photometry and then confirmed using a combination of precise radial velocities, ground-based photometry, spectra, and speckle imaging. TOI-5205b has one of the highest mass ratios for M-dwarf planets, with a mass ratio of almost 0.3%, as it orbits a host star that is just 0.392 ± 0.015M. Its planetary radius is 1.03 ± 0.03RJ, while the mass is 1.08 ± 0.06MJ. Additionally, the large size of the planet orbiting a small star results in a transit depth of ∼7%, making it one of the deepest transits of a confirmed exoplanet orbiting a main-sequence star. The large transit depth makes TOI-5205b a compelling target to probe its atmospheric properties, as a means of tracing the potential formation pathways. While there have been radial-velocity-only discoveries of giant planets around mid-M dwarfs, this is the first transiting Jupiter with a mass measurement discovered around such a low-mass host star. The high mass of TOI-5205b stretches conventional theories of planet formation and disk scaling relations that cannot easily recreate the conditions required to form such planets.

    more » « less
  2. null (Ed.)
    We report the confirmation and mass determination of three hot Jupiters discovered by the Transiting Exoplanet Survey Satellite (TESS) mission: HIP 65Ab (TOI-129, TIC-201248411) is an ultra-short-period Jupiter orbiting a bright ( V = 11.1 mag) K4-dwarf every 0.98 days. It is a massive 3.213 ± 0.078  M J planet in a grazing transit configuration with an impact parameter of b = 1.17 −0.08 +0.10 . As a result the radius is poorly constrained, 2.03 −0.49 +0.61 R J . The planet’s distance to its host star is less than twice the separation at which it would be destroyed by Roche lobe overflow. It is expected to spiral into HIP 65A on a timescale ranging from 80 Myr to a few gigayears, assuming a reduced tidal dissipation quality factor of Q s ′ = 10 7 − 10 9 . We performed a full phase-curve analysis of the TESS data and detected both illumination- and ellipsoidal variations as well as Doppler boosting. HIP 65A is part of a binary stellar system, with HIP 65B separated by 269 AU (3.95 arcsec on sky). TOI-157b (TIC 140691463) is a typical hot Jupiter with a mass of 1.18 ± 0.13  M J and a radius of 1.29 ± 0.02  R J . It has a period of 2.08 days, which corresponds to a separation of just 0.03 AU. This makes TOI-157 an interesting system, as the host star is an evolved G9 sub-giant star ( V = 12.7). TOI-169b (TIC 183120439) is a bloated Jupiter orbiting a V = 12.4 G-type star. It has a mass of 0.79 ±0.06  M J and a radius of 1.09 −0.05 +0.08 R J . Despite having the longest orbital period ( P = 2.26 days) of the three planets, TOI-169b receives the most irradiation and is situated on the edge of the Neptune desert. All three host stars are metal rich with [Fe / H] ranging from 0.18 to0.24. 
    more » « less
  3. Abstract

    TOI-2076 b is a sub-Neptune-sized planet (R= 2.39 ± 0.10R) that transits a young (204 ± 50 MYr) bright (V= 9.2) K-dwarf hosting a system of three transiting planets. Using spectroscopic observations obtained with the NEID spectrograph on the WIYN 3.5 m Telescope, we model the Rossiter–McLaughlin effect of TOI-2076 b, and derive a sky-projected obliquity ofλ=315+16°. Using the size of the star (R= 0.775 ± 0.015R), and the stellar rotation period (Prot= 7.27 ± 0.23 days), we estimate an obliquity ofψ=189+10°(ψ< 34° at 95% confidence), demonstrating that TOI-2076 b is in a well-aligned orbit. Simultaneous diffuser-assisted photometry from the 3.5 m telescope at Apache Point Observatory rules out flares during the transit. TOI-2076 b joins a small but growing sample of young planets in compact multi-planet systems with well-aligned orbits, and is the fourth planet with an age ≲300 Myr in a multi-transiting system with an obliquity measurement. The low obliquity of TOI-2076 b and the presence of transit timing variations in the system suggest the TOI-2076 system likely formed via convergent disk migration in an initially well-aligned disk.

    more » « less
  4. Abstract

    Using both ground-based transit photometry and high-precision radial velocity spectroscopy, we confirm the planetary nature of TOI-3785 b. This transiting Neptune orbits an M2-Dwarf star with a period of ∼4.67 days, a planetary radius of 5.14 ± 0.16R, a mass of14.953.92+4.10M, and a density ofρ=0.610.17+0.18g cm−3. TOI-3785 b belongs to a rare population of Neptunes (4R<Rp< 7R) orbiting cooler, smaller M-dwarf host stars, of which only ∼10 have been confirmed. By increasing the number of confirmed planets, TOI-3785 b offers an opportunity to compare similar planets across varying planetary and stellar parameter spaces. Moreover, with a high-transmission spectroscopy metric of ∼150 combined with a relatively cool equilibrium temperature ofTeq= 582 ± 16 K and an inactive host star, TOI-3785 b is one of the more promising low-density M-dwarf Neptune targets for atmospheric follow up. Future investigation into atmospheric mass-loss rates of TOI-3785 b may yield new insights into the atmospheric evolution of these low-mass gas planets around M dwarfs.

    more » « less
  5. Abstract

    We present the Distant Giants Survey, a three-year radial velocity campaign to measure P(DG∣CS), the conditional occurrence of distant giant planets (DG;Mp∼ 0.3–13MJ,P> 1 yr) in systems hosting a close-in small planet (CS;Rp< 10R). For the past two years, we have monitored 47 Sun-like stars hosting small transiting planets detected by TESS. We present the selection criteria used to assemble our sample and report the discovery of two distant giant planets, TOI-1669 b and TOI-1694 c. For TOI-1669 b we find thatMsini=0.573±0.074MJ,P= 502 ± 16 days, ande< 0.27, while for TOI-1694 c,Msini=1.05±0.05MJ,P= 389.2 ± 3.9 days, ande= 0.18 ± 0.05. We also confirmed the 3.8 days transiting planet TOI-1694 b by measuring a true mass ofM= 26.1 ± 2.2M. At the end of the Distant Giants Survey, we will incorporate TOI-1669 b and TOI-1694 c into our calculation of P(DG∣CS), a crucial statistic for understanding the relationship between outer giants and small inner companions.

    more » « less