skip to main content

Title: Tunable Microwave Conductance of Nanodomains in Ferroelectric PbZr 0.2 Ti 0.8 O 3 Thin Film

Ferroelectric materials exhibit spontaneous polarization that can be switched by electric field. Beyond traditional applications as nonvolatile capacitive elements, the interplay between polarization and electronic transport in ferroelectric thin films has enabled a path to neuromorphic device applications involving resistive switching. A fundamental challenge, however, is that finite electronic conductivity may introduce considerable power dissipation and perhaps destabilize ferroelectricity itself. Here, tunable microwave frequency electronic response of domain walls injected into ferroelectric lead zirconate titanate (PbZr0.2Ti0.8O3) on the level of a single nanodomain is revealed. Tunable microwave response is detected through first‐order reversal curve spectroscopy combined with scanning microwave impedance microscopy measurements taken near 3 GHz. Contributions of film interfaces to the measured AC conduction through subtractive milling, where the film exhibited improved conduction properties after removal of surface layers, are investigated. Using statistical analysis and finite element modeling, we inferred that the mechanism of tunable microwave conductance is the variable area of the domain wall in the switching volume. These observations open the possibilities for ferroelectric memristors or volatile resistive switches, localized to several tens of nanometers and operating according to well‐defined dynamics under an applied field.

more » « less
Award ID(s):
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Electronic Materials
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Nanoelectronic devices based on ferroelectric domain walls (DWs), such as memories, transistors, and rectifiers, have been demonstrated in recent years. Practical high‐speed electronics, on the other hand, usually demand operation frequencies in the gigahertz (GHz) regime, where the effect of dipolar oscillation is important. Herein, an unexpected giant GHz conductivity on the order of 103S m−1is observed in certain BiFeO3DWs, which is about 100 000 times greater than the carrier‐induced direct current (dc) conductivity of the same walls. Surprisingly, the nominal configuration of the DWs precludes the alternating current (ac) conduction under an excitation electric field perpendicular to the surface. Theoretical analysis shows that the inclined DWs are stressed asymmetrically near the film surface, whereas the vertical walls in a control sample are not. The resultant imbalanced polarization profile can then couple to the out‐of‐plane microwave fields and induce power dissipation, which is confirmed by the phase‐field modeling. Since the contributions from mobile‐carrier conduction and bound‐charge oscillation to the ac conductivity are equivalent in a microwave circuit, the research on local structural dynamics may open a new avenue to implement DW nano‐devices for radio‐frequency applications.

    more » « less
  2. Abstract

    Ferroelectrics are being increasingly called upon for electronic devices in extreme environments. Device performance and energy efficiency is highly correlated to clock frequency, operational voltage, and resistive loss. To increase performance it is common to engineer ferroelectric domain structure with highly‐correlated electrical and elastic coupling that elicit fast and efficient collective switching. Designing domain structures with advantageous properties is difficult because the mechanisms involved in collective switching are poorly understood and difficult to investigate. Collective switching is a hierarchical process where the nano‐ and mesoscale responses control the macroscopic properties. Using chemical solution synthesis, epitaxially nearly‐relaxed (100) BaTiO3films are synthesized. Thermal strain induces a strongly‐correlated domain structure with alternating domains of polarization along the [010] and [001] in‐plane axes and 90° domain walls along the [011] or [01] directions. Simultaneous capacitance–voltage measurements and band‐excitation piezoresponse force microscopy revealed strong collective switching behavior. Using a deep convolutional autoencoder, hierarchical switching is automatically tracked and the switching pathway is identified. The collective switching velocities are calculated to be ≈500 cm s−1at 5 V (7 kV cm−1), orders‐of‐magnitude faster than expected. These combinations of properties are promising for high‐speed tunable dielectrics and low‐voltage ferroelectric memories and logic.

    more » « less
  3. Abstract

    Ferroelectric domain walls are quasi‐2D systems that show great promise for the development of nonvolatile memory, memristor technology, and electronic components with ultrasmall feature size. Electric fields, for example, can change the domain wall orientation relative to the spontaneous polarization and switch between resistive and conductive states, controlling the electrical current. Being embedded in a 3D material, however, the domain walls are not perfectly flat and can form networks, which leads to complex physical structures. In this work, the importance of the nanoscale structure for the emergent transport properties is demonstrated, studying electronic conduction in the 3D network of neutral and charged domain walls in ErMnO3. By combining tomographic microscopy techniques and finite element modeling, the contribution of domain walls within the bulk is clarified and the significance of curvature effects for the local conduction is shown down to the nanoscale. The findings provide insights into the propagation of electrical currents in domain wall networks, reveal additional degrees of freedom for their control, and provide quantitative guidelines for the design of domain‐wall‐based technology.

    more » « less
  4. Abstract

    Epitaxially strained BiFeO3thin films with coexisting tetragonal‐ and rhombohedral‐like phases exhibit a range of intriguing functional properties, often strongly related to the unique microstructure of the film. Here enhancements in electromechanical response are reported during simultaneous nanoscale application of electric field and localized stress. These enhancements manifest in the form of peaks, or humps, in the piezoresponse hysteresis loops obtained under a select polarity of applied electric field, corresponding nominally to a downward polarization. Using a variation of band excitation piezoresponse force spectroscopy to collect electromechanical hysteresis loops and to simultaneously monitor the elastic behavior during switching, a comprehensive picture of the complex interplay of ferroelastic structural transitions and ferroelectric switching and its impact on the overall functional response are developed. Such an understanding is a crucial step toward realizing practical electronic devices, such as pressure sensors, incorporating this promising material.

    more » « less
  5. Abstract

    Ferroelectric memristors represent a promising new generation of devices that have a wide range of applications in memory, digital information processing, and neuromorphic computing. Recently, van der Waals ferroelectric In2Se3with unique interlinked out‐of‐plane and in‐plane polarizations has enabled multidirectional resistance switching, providing unprecedented flexibility in planar and vertical device integrations. However, the operating mechanisms of these devices have remained unclear. Here, through the demonstration of van der Waals In2Se3‐based planar ferroelectric memristors with the device resistance continuously tunable over three orders of magnitude, and by correlating device resistance states, ferroelectric domain configurations, and surface electric potential, the studies reveal that the resistive switching is controlled by the multidomain formations and the associated energy barriers between domains, as opposed to the commonly assumed Schottky barrier modulations at the metal‐ferroelectric interface. The findings reveal new device physics through elucidating the microscopic operating mechanisms of this new generation of devices, and provide a critical guide for future device development and integration efforts.

    more » « less