When periodically packing the intramolecular donor-acceptor structures to form ferroelectric-like lattice identified by second harmonic generation, our CD49 molecular crystal shows long-wavelength persistent photoluminescence peaked at 542 nm with the lifetime of 0.43 s, in addition to the short-wavelength prompt photoluminescence peaked at 363 nm with the lifetime of 0.45 ns. Interestingly, the long-wavelength persistent photoluminescence demonstrates magnetic field effects, showing as crystalline intermolecular charge-transfer excitons with singlet spin characteristics formed within ferroelectric-like lattice based on internal minority/majority carrier-balancing mechanism activated by isomer doping effects towards increasing electron-hole pairing probability. Our photoinduced Raman spectroscopy reveals the unusual slow relaxation of photoexcited lattice vibrations, indicating slow phonon effects occurring in ferroelectric-like lattice. Here, we show that crystalline intermolecular charge-transfer excitons are interacted with ferroelectric-like lattice, leading to exciton-lattice coupling within periodically packed intramolecular donor-acceptor structures to evolve ultralong-lived crystalline light-emitting states through slow phonon effects in ferroelectric light-emitting organic crystal.
The ultralong‐lived upconversion luminescence with the lifetime of 0.48 s in a broad spectral range (530–650 nm) is observed in CD49 (9‐(3‐(5‐bromopyridin‐3‐yl)prop‐2‐yn‐1‐yl)‐9
- PAR ID:
- 10363763
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Advanced Optical Materials
- Volume:
- 10
- Issue:
- 5
- ISSN:
- 2195-1071
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
The rationalization of the molecular parameters that influence the intensity and sign of circularly polarized luminescence (CPL) for chiral emitters is a challenging task and remains of high interest for future chiral optoelectronic applications. In this report, we explore the design of novel chiral donor–acceptor structures based on C 2 -symmetric bicarbazole systems and compare the influence of the type of chirality, namely axial versus helical, and the electron withdrawing strength of the acceptor units on the resulting photophysical and CPL properties. By using carbonyl-based acceptors with both axial and helical electron donors, CP-Thermally Activated Delayed Fluoresence (TADF) can be obtained, whose efficiency depends on the dihedral angle between the carbazole moieties, related to the axial and helical chirality of the compounds. The latter also impacts the intensity of the CPL, which shows an opposite trend as a function of the polarity of the solvent, with a notably strong increase of the luminescence dissymmetry factor, g lum , for the helical donor–acceptor compounds related to a subtle reoarganization of the intramolecular charge-transfer process.more » « less
-
Selectively blocking undesirable exciton transfer pathways is crucial for utilizing exciton conversion processes that involve participation of multiple chromophores. This is particularly challenging for solid-state systems, where the chromophores are fixed in close proximity. For instance, the low efficiency of solid-state triplet–triplet upconversion calls for inhibiting the parasitic singlet back-transfer without blocking the flow of triplet excitons. Here, we present a reticular chemistry strategy that inhibits the resonance energy transfer of singlet excitons. Within a pillared layer metal–organic framework (MOF), pyrene-based singlet donors are situated perpendicular to porphyrin-based acceptors. High resolution transmission electron microscopy and electron diffraction enable direct visualization of the structural relationship between donor and acceptor (D–A) chromophores within the MOF. Time-resolved photoluminescence measurements reveal that the structural and symmetry features of the MOF reduce the donor-to-acceptor singlet transfer efficiency to less than 36% compared to around 96% in the control sample, where the relative orientation of the donor and acceptor chromophores cannot be controlled.more » « less
-
Abstract A major breakthrough in the field of organic photovoltaics (OPVs) was the development of the donor/acceptor heterojunction that aids in separating Coulombically bound excitons that are generated upon photoabsorption. Additionally, bound charge transfer (CT) states that result from the exchange of charge carriers across the donor/acceptor interface are believed to play an important role in charge generation. Though organic thin films are often disordered, enhancements to the local structural order at the donor/acceptor interface have recently been shown to greatly influence CT state energetics and the charge generation process. In this progress report, recent efforts to understand the role that donor/acceptor morphology plays in the behavior of CT states and the resulting implications on OPV function are presented. It is aimed to provide a survey of different experimental approaches and to present a balanced examination of current interpretations of key results, and to offer best practices for the fabrication and study of morphologically tunable donor/acceptor CT states.
-
Abstract Fluorescent materials that efficiently convert triplet excitons into singlets through reverse intersystem crossing (RISC) rival the efficiencies of phosphorescent state‐of‐the‐art organic light‐emitting diodes. This upconversion process, a phenomenon known as thermally activated delayed fluorescence (TADF), is dictated by the rate of RISC, a material‐dependent property that is challenging to determine experimentally. In this work, a new analytical model is developed which unambiguously determines the magnitude of RISC, as well as several other important photophysical parameters such as exciton diffusion coefficients and lengths, all from straightforward time‐resolved photoluminescence measurements. From a detailed investigation of five TADF materials, important structure–property relationships are derived and a brominated derivative of 2,4,5,6‐tetrakis(carbazol‐9‐yl)isophthalonitrile that has an exciton diffusion length of over 40 nm and whose excitons interconvert between the singlet and triplet states ≈36 times during one lifetime is identified.