skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, June 13 until 2:00 AM ET on Friday, June 14 due to maintenance. We apologize for the inconvenience.


Title: HSC-XXL: Baryon budget of the 136 XXL groups and clusters
Abstract

We present our determination of the baryon budget for an X-ray-selected XXL sample of 136 galaxy groups and clusters spanning nearly two orders of magnitude in mass (M500 ∼ 1013–1015 M⊙) and the redshift range 0 ≲ z ≲ 1. Our joint analysis is based on the combination of Hyper Suprime-Cam Subaru Strategic Program (HSC-SSP) weak-lensing mass measurements, XXL X-ray gas mass measurements, and HSC and Sloan Digital Sky Survey multiband photometry. We carry out a Bayesian analysis of multivariate mass-scaling relations of gas mass, galaxy stellar mass, stellar mass of brightest cluster galaxies (BCGs), and soft-band X-ray luminosity, by taking into account the intrinsic covariance between cluster properties, selection effect, weak-lensing mass calibration, and observational error covariance matrix. The mass-dependent slope of the gas mass–total mass (M500) relation is found to be $1.29_{-0.10}^{+0.16}$, which is steeper than the self-similar prediction of unity, whereas the slope of the stellar mass–total mass relation is shallower than unity; $0.85_{-0.09}^{+0.12}$. The BCG stellar mass weakly depends on cluster mass with a slope of $0.49_{-0.10}^{+0.11}$. The baryon, gas mass, and stellar mass fractions as a function of M500 agree with the results from numerical simulations and previous observations. We successfully constrain the full intrinsic covariance of the baryonic contents. The BCG stellar mass shows the larger intrinsic scatter at a given halo total mass, followed in order by stellar mass and gas mass. We find a significant positive intrinsic correlation coefficient between total (and satellite) stellar mass and BCG stellar mass and no evidence for intrinsic correlation between gas mass and stellar mass. All the baryonic components show no redshift evolution.

 
more » « less
NSF-PAR ID:
10363792
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Publications of the Astronomical Society of Japan
Volume:
74
Issue:
1
ISSN:
0004-6264
Format(s):
Medium: X Size: p. 175-208
Size(s):
["p. 175-208"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Which galaxies in the general population turn into active galactic nuclei (AGNs) is a keystone of galaxy formation and evolution. Thanks to SRG/eROSITA’s contiguous 140 square degree pilot survey field, we constructed a large, complete, and unbiased soft X-ray flux-limited ( F X  > 6.5 × 10 −15 erg s −1 cm −2 ) AGN sample at low redshift, 0.05 <  z  < 0.55. Two summary statistics, the clustering using spectra from SDSS-V and galaxy-galaxy lensing with imaging from HSC, are measured and interpreted with halo occupation distribution and abundance matching models. Both models successfully account for the observations. We obtain an exceptionally complete view of the AGN halo occupation distribution. The population of AGNs is broadly distributed among halos with a mean mass of 3.9 −2.4 +2.0  × 10 12   M ⊙ . This corresponds to a large-scale halo bias of b ( z  = 0.34) = 0.99 −0.10 +0.08 . The central occupation has a large transition parameter, σ log 10 ( M )  = 1.28 ± 0.2. The satellite occupation distribution is characterized by a shallow slope, α sat  = 0.73 ± 0.38. We find that AGNs in satellites are rare, with f sat  < 20%. Most soft X-ray-selected AGNs are hosted by central galaxies in their dark matter halo. A weak correlation between soft X-ray luminosity and large-scale halo bias is confirmed (3.3 σ ). We discuss the implications of environmental-dependent AGN triggering. This study paves the way toward fully charting, in the coming decade, the coevolution of X-ray AGNs, their host galaxies, and dark matter halos by combining eROSITA with SDSS-V, 4MOST, DESI, LSST, and Euclid data. 
    more » « less
  2. The mass profiles of massive dark matter halos are highly sensitive to the nature of dark matter and potential modifications of the theory of gravity on large scales. The Λ cold dark matter (CDM) paradigm makes strong predictions on the shape of dark matter halos and on the dependence of the shape parameters on halo mass, such that any deviation from the predicted universal shape would have important implications for the fundamental properties of dark matter. Here we use a set of 12 galaxy clusters with available deep X-ray and Sunyaev–Zel’dovich data to constrain the shape of the gravitational field with an unprecedented level of precision over two decades in radius. We introduce a nonparametric framework to reconstruct the shape of the gravitational field under the assumption of hydrostatic equilibrium and compare the resulting mass profiles to the expectations of Navarro–Frenk–White (NFW) and Einasto parametric mass profiles. On average, we find that the NFW profile provides an excellent description of the recovered mass profiles, with deviations of less than 10% over a wide radial range. However, there appears to be more diversity in the shape of individual profiles than can be captured by the NFW model. The average NFW concentration and its scatter agree very well with the prediction of the ΛCDM framework. For a subset of systems, we disentangle the gravitational field into the contribution of baryonic components (gas, brightest cluster galaxy, and satellite galaxies) and that of dark matter. The stellar content dominates the gravitational field inside ∼0.02 R 500 but is responsible for only 1–2% of the total gravitational field inside R 200 . The total baryon fraction reaches the cosmic value at R 200 and slightly exceeds it beyond this point, possibly indicating a mild level of nonthermal pressure support (10 − 20%) in cluster outskirts. Finally, the relation between observed and baryonic acceleration exhibits a complex shape that strongly departs from the radial acceleration relation in spiral galaxies, which shows that the aforementioned relation does not hold at the galaxy-cluster scale. 
    more » « less
  3. null (Ed.)
    ABSTRACT We constrain the evolution of the brightest cluster galaxy plus intracluster light (BCG + ICL) using an ensemble of 42 galaxy groups and clusters that span redshifts of z = 0.05−1.75 and masses of M500,c= 2 × 1013−1015 M⊙. Specifically, we measure the relationship between the BCG + ICL stellar mass M⋆ and M500,c at projected radii 10 < r < 100 kpc for three different epochs. At intermediate redshift ($\bar{z}=0.40$), where we have the best data, we find M⋆ ∝ M500,c0.48 ± 0.06. Fixing the exponent of this power law for all redshifts, we constrain the normalization of this relation to be 2.08 ± 0.21 times higher at $\bar{z}=0.40$ than at high redshift ($\bar{z}=1.55$). We find no change in the relation from intermediate to low redshift ($\bar{z}=0.10$). In other words, for fixed M500,c, M⋆ at 10 < r < 100 kpc increases from $\bar{z}=1.55$ to $\bar{z}=0.40$ and not significantly thereafter. Theoretical models predict that the physical mass growth of the cluster from z = 1.5 to z = 0 within r500,c is 1.4×, excluding evolution due to definition of r500,c. We find that M⋆ within the central 100 kpc increases by ∼3.8× over the same period. Thus, the growth of M⋆ in this central region is more than a factor of 2 greater than the physical mass growth of the cluster as a whole. Furthermore, the concentration of the BCG + ICL stellar mass, defined by the ratio of stellar mass within 10 kpc to the total stellar mass within 100 kpc, decreases with increasing M500,c at all z. We interpret this result as evidence for inside–out growth of the BCG + ICL over the past 10 Gyr, with stellar mass assembly occurring at larger radii at later times. 
    more » « less
  4. null (Ed.)
    ABSTRACT We perform a cross validation of the cluster catalogue selected by the red-sequence Matched-filter Probabilistic Percolation algorithm (redMaPPer) in Dark Energy Survey year 1 (DES-Y1) data by matching it with the Sunyaev–Zel’dovich effect (SZE) selected cluster catalogue from the South Pole Telescope SPT-SZ survey. Of the 1005 redMaPPer selected clusters with measured richness $\hat{\lambda }\gt 40$ in the joint footprint, 207 are confirmed by SPT-SZ. Using the mass information from the SZE signal, we calibrate the richness–mass relation using a Bayesian cluster population model. We find a mass trend λ ∝ MB consistent with a linear relation (B ∼ 1), no significant redshift evolution and an intrinsic scatter in richness of σλ = 0.22 ± 0.06. By considering two error models, we explore the impact of projection effects on the richness–mass modelling, confirming that such effects are not detectable at the current level of systematic uncertainties. At low richness SPT-SZ confirms fewer redMaPPer clusters than expected. We interpret this richness dependent deficit in confirmed systems as due to the increased presence at low richness of low-mass objects not correctly accounted for by our richness-mass scatter model, which we call contaminants. At a richness $\hat{\lambda }=40$, this population makes up ${\gt}12{{\ \rm per\ cent}}$ (97.5 percentile) of the total population. Extrapolating this to a measured richness $\hat{\lambda }=20$ yields ${\gt}22{{\ \rm per\ cent}}$ (97.5 percentile). With these contamination fractions, the predicted redMaPPer number counts in different plausible cosmologies are compatible with the measured abundance. The presence of such a population is also a plausible explanation for the different mass trends (B ∼ 0.75) obtained from mass calibration using purely optically selected clusters. The mean mass from stacked weak lensing (WL) measurements suggests that these low-mass contaminants are galaxy groups with masses ∼3–5 × 1013 M⊙ which are beyond the sensitivity of current SZE and X-ray surveys but a natural target for SPT-3G and eROSITA. 
    more » « less
  5. Abstract The chemical abundance patterns of gas and stars in galaxies are powerful probes of galaxies’ star formation histories and the astrophysics of galaxy assembly but are challenging to measure with confidence in distant galaxies. In this paper, we report the first measurements of the correlation between stellar mass ( M * ) and multiple tracers of chemical enrichment (including O, N, and Fe) in individual z ∼ 2–3 galaxies, using a sample of 195 star-forming galaxies from the Keck Baryonic Structure Survey. The galaxies’ chemical abundances are inferred using photoionization models capable of reconciling high-redshift galaxies’ observed extreme rest-UV and rest-optical spectroscopic properties. We find that the M * –O/H relation for our sample is relatively shallow, with moderately large scatter, and is offset ∼0.35 dex higher than the corresponding M * –Fe/H relation. The two relations have very similar slopes, indicating a high level of α -enhancement—O/Fe ≈ 2.2 × (O/Fe) ⊙ —across two decades in M * . The M * –N/H relation has the steepest slope and largest intrinsic scatter, which likely results from the fact that many z ∼ 2 galaxies are observed near or past the transition from “primary” to “secondary” N production, and may reflect uncertainties in the astrophysical origin of N. Together, these results suggest that z ∼ 2 galaxies are old enough to have seen substantial enrichment from intermediate-mass stars, but are still young enough that Type Ia supernovae have not had time to contribute significantly to their enrichment. 
    more » « less