Polyelectrolyte solutions have been proposed as a method to improve the efficiency of lithium-ion batteries by increasing the cation transference number because the polymer self-diffusion coefficient is much lower than that of the counterion. However, this is not necessarily true for the polymer mobility. In some cases, negative transference numbers have been reported, which implies that the lithium ions are transporting to the same electrode as the anion, behavior that is often attributed to a binding of counterions to the polyion. We use a simple model where we bind some counterions to the polymer via harmonic springs to investigate this phenomenon. We find that both the number of bound counterions and the strength of their binding alter the transference number, and, in some cases, the transference number is negative. We also investigate how the transference number depends on the Manning parameter, the ratio of the Bjerrum length to charge separation along the chain. By altering the Manning parameter, the transference number can almost be doubled, which suggests that charge spacing could be a way to increase the transference number of polyelectrolyte solutions.
more » « less- Award ID(s):
- 1856595
- NSF-PAR ID:
- 10363801
- Publisher / Repository:
- American Institute of Physics
- Date Published:
- Journal Name:
- The Journal of Chemical Physics
- Volume:
- 156
- Issue:
- 10
- ISSN:
- 0021-9606
- Page Range / eLocation ID:
- Article No. 104901
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
We employ a combination of the single chain in mean field simulation approach with the solution of Poisson's equation to study the influence of charge heterogeneities on the structure of protein–polyelectrolyte complexes. By adopting a coarse-grained model of representing proteins as charged nanoparticles, we studied the influence of the pattern of charge heterogeneities, net charge, ratio of positive to negative charges on the patches, and the volume fraction of the particles on the structural and aggregation characteristics of proteins in polyelectrolyte solutions. Our results demonstrate that the pattern of charge heterogeneities can exert a significant influence on the resulting characteristics of the aggregates, in some cases leading to a transformation from polymer-bridged complexes into direct particle aggregates driven by the attraction between oppositely charged patches.more » « less
-
Polyelectrolyte solutions are of considerable scientific and practical importance. One of the most widely studied polymer is polystyrene sulfonate (PSS), which has a hydrophobic backbone with pendant charged groups. A polycation with similar chemical structure is poly(vinyl benzyltri methyl) ammonium (PVBTMA). In this work, we develop coarse-grained (CG) models for PSS and PVBTMA with explicit CG water and with sodium and chloride counterions, respectively. We benchmark the CG models via a comparison with atomistic simulations for single chains. We find that the choice of the topology and the partial charge distribution of the CG model, both play a crucial role in the ability of the CG model to reproduce results from atomistic simulations. There are dramatic consequences, e.g., collapse of polyions, with injudicious choices of the local charge distribution. The polyanions and polycations exhibit a similar conformational and dynamical behavior, suggesting that the sign of the polyion charge does not play a significant role.
-
Because surface-grafted polyelectrolyte brushes (PEBs) are responsive to external stimuli, such as electric fields and ionic strength, PEBs are attractive for applications ranging from drug delivery to separations technologies. Essential to PEB utilization is understanding how critical parameters like grafting density (σ) impact PEB structure and the dynamics of the PEB and counterions. To study the effect of σ on PEB and counterion structure and dynamics, we fine-tune a coarse-grained model that retains the chemical specificity of a strong polyelectrolyte, poly[(2-(methacryloyloxy)ethyl) trimethylammonium chloride] (PMETAC), using the MARTINI forcefield. Using “salt-free” conditions where the counterion concentration balances the charge on the brush, we build coarse-grained (CG) molecular dynamics simulations for MARTINI PMETAC brushes (N=150 monomers; MW = 31.2 kg/mol) at experimentally relevant values of σ = 0.05, 0.10, 0.20, and 0.40 chains/nm2. Using 5 µs simulations, we investigate the effects of grafting density on PEB structure, ion dissociation dynamics, polymer mobility, and counterion diffusivity. Results show that competition between electrostatic interactions, steric hindrance, and polymer mobility controls counterion diffusivity. The interplay of these factors leads to diffusivity that depends non-monotonically on σ, with counterion diffusivity peaking at an intermediate σ = 0.10 chains/nm2.more » « less
-
A novel precision single-ion conductor with phenylsulfonyl(trifluoromethylsulfonyl)imide lithium salt covalently bound to every fifth carbon of a polyethylene backbone, p5PhTFSI-Li, was synthesized via ring opening metathesis polymerization (ROMP) followed by post polymerization modification. The conversion of poly(4-phenylcyclopentene), bearing 94% sulfonate anions, to trifluoromethanesulfonimide (TFSI) anions was highly efficient (∼90%) as determined by 19 F NMR analysis and corroborated through other spectroscopic methods. The flexible hydrocarbon backbone combined with a bulky TFSI anion led to an observable glass transition temperature of 199 °C even at these high levels of ionization. A high thermal stability up to 375 °C was also observed. Blending of p5PhTFSI-Li with poly(ethylene oxide) at various compositions was performed to investigate electrochemical performance and transference numbers with respect to the lithium electrode using a combination of impedance and polarization methods. At 90 °C and a 50 : 50 wt% blend composition, this system displayed the highest reported conductivity (2.00 × 10 −4 S cm −1 ) of a system with a demonstrated lithium-ion transference number near unity. Such performance is also atypical of single ion conductors produced through post-polymerization modification, which we attribute to the high yield of TFSI conversion. Investigations into the complex miscibility and phase behavior of these blends at various compositions was also probed by a combination of microscopy and differential scanning calorimetry, which is discussed with reference to computational predictions of how charge correlations affect polymer blend phase behavior.more » « less