skip to main content

Title: The Electrical Conductivity of Liebermannite: Implications for Water Transport Into the Earth's Lower Mantle

Liebermannite (KAlSi3O8) is a principal mineral phase expected to be thermodynamically stable in deeply subducted continental and oceanic crusts. The crystal structure of liebermannite exhibits tunnels that are formed between the assemblies of double chains of edge‐sharing (Si, Al) O6octahedral units, which act as a repository for large incompatible alkali ions. In this study, we investigate the electrical conductivity of liebermannite at 12, 15, and 24 GPa and temperature of 1500 K to track subduction pathways of continental sediments into the Earth's lower mantle. Further, we looked at whether liebermannite could sequester incompatible H2O at deep mantle conditions. We observe that the superionic conductivity of liebermannite due to the thermally activated hopping of K+ions results in high electrical conductivity of more than 1 S/m. Infrared spectral features of hydrous liebermannite indicate the presence of both molecular H2O and hydroxyl (OH) groups in its crystal structure. The observed high electrical conductivity in the mantle transition zone beneath Northeastern China and the lower mantle beneath the Philippine Sea can be attributed to the subduction pathways of continental sediments deep into the Earth's mantle. While major mineral phases in pyrolitic compositions are almost devoid of H2O under lower mantle conditions, our study demonstrates that liebermannite could be an important host of H2O in these conditions. We propose that the relatively high H2O contents of ocean island basalts derived from deep mantle plumes are primarily related to deeply subducted continental sediments, in which liebermannite is the principal H2O carrier.

more » « less
Award ID(s):
1753125 1763215
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Solid Earth
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Oceanic hotspots with extreme enriched mantle radiogenic isotopic signatures—including low143Nd/144Nd indicative of subducted continental crust—are linked to plume conduits sampling the southern hemispheric mantle. However, the mechanisms responsible for concentrating subducted continental crust in the austral mantle are unknown. We show that subduction of sediments and subduction eroded material, and lower continental crust delamination, cannot generate this spatially coherent austral geochemical domain. However, continental collisions—associated with the assembly of Gondwana‐Pangea—were positioned predominantly in the southern hemisphere during the late Neoproterozoic appearance of widespread continental ultra‐high‐pressure metamorphic terranes, which marked the onset of deep subduction of upper continental crust. We propose that deep subduction of upper continental crust at ancient rifted‐passive margins during ca. 650‐300 Ma austral supercontinent assembly resulted in enhanced upper continental crust delivery into the southern hemisphere mantle. Similarly enriched mantle domains are absent in the boreal mantle plume source, for two reasons. First, continental crust subducted after 300 Ma—when the continents drifted into the northern hemisphere—has had insufficient time to return to the surface in plumes sampling the northern hemisphere mantle. Second, before the first known appearance of continental ultra‐high‐pressure rocks at 650 Ma, deep subduction of upper continental crust was uncommon, limiting its subduction into the northern (and southern) hemisphere mantle earlier in Earth history. Our model implies a recent formation of the austral enriched mantle domain, explains the geochemical dichotomy between austral and boreal plume sources, and may explain why there are twice as many austral hotspots as boreal hotspots.

    more » « less
  2. Abstract

    At subduction zones, significant volumes of sediments and other crustal material are carried on top of the downgoing plate past the trench and into the mantle. This represents the dominant process by which material from the Earth's surface is recycled to the interior. However, the fate of these recycled materials is uncertain. Subducted material may be carried with the slab into the deep mantle, or it may form diapirs that ascend into the hotter portions of the mantle wedge, where they can melt and/or be relaminated to the base of the arc crust. While this material can be a mixture (or “mélange”) of sediments, oceanic crust and mantle rocks, here we focus on the dynamics of the uppermost layer of sediments on the downgoing slab. We modified a thermodynamic model to accurately predict the equilibrium mineral assemblage, melting behavior, and density of a range of subducted sediment compositions at pressure and temperature conditions relevant to subduction zones. Using this thermodynamic model, we constructed a coupled dynamic model of sediment diapirs and identified the primary parameters that control diapir behavior: sediment thickness and composition, and the thermal state of the subduction zone. Relamination of ascending diapirs is favored by greater sediment thicknesses, more felsic compositions, and warmer thermal conditions. By contrast, diapirism is suppressed in colder arcs, or where subducted sediment layers are thin or more mafic. Applying this model to modern subduction zones suggests that multiple processes are active today, with relamination occurring in a significant subset of modern arcs.

    more » « less
  3. Abstract

    The transport of hydrogen into Earth's deep interior may have an impact on lower mantle dynamics as well as on the seismic signature of subducted material. Due to the stability of the hydrous phasesδ‐AlOOH (delta phase), MgSiO2(OH)2(phase H), andε‐FeOOH at high temperatures and pressures, their solid solutions may transport significant amounts of hydrogen as deep as the core‐mantle boundary. We have constrained the equation of state, including the effects of a spin crossover in the Fe3+atoms, of (Al, Fe)‐phase H: Al0.84Fe3+0.07Mg0.02Si0.06OOH, using powder X‐ray diffraction measurements to 125 GPa, supported by synchrotron Mössbauer spectroscopy measurements on (Al, Fe)‐phase H andδ‐(Al, Fe)OOH. The changes in spin state of Fe3+in (Al, Fe)‐phase H results in a significant decrease in bulk sound velocity and occurs over a different pressure range (48–62 GPa) compared withδ‐(Al, Fe)OOH (32–40 GPa). Changes in axial compressibilities indicate a decrease in the compressibility of hydrogen bonds in (Al, Fe)‐phase H near 30 GPa, which may be associated with hydrogen bond symmetrization. The formation of (Al, Fe)‐phase H in subducted oceanic crust may contribute to scattering of seismic waves in the mid‐lower mantle (∼1,100–1,550 km). Accumulation of 1–4 wt.% (Al, Fe)‐phase H could reproduce some of the seismic signatures of large, low seismic‐velocity provinces. Our results suggest that changes in the electronic structure of phases in the (δ‐AlOOH)‐(MgSiO2(OH)2)‐(ε‐FeOOH) solid solution are sensitive to composition and that the presence of these phases in subducted oceanic crust could be seismically detectable throughout the lower mantle.

    more » « less
  4. Abstract

    Nitrogen is considered to be transported from Earth′s surface to the top of the lower mantle through subduction. However, little is known on the transportation and fate of subducted nitrogen to the Earth′s interior during slab‐mantle interactions. In this study, the stability of subducted sedimentary nitrogen in the reduced mantle was investigated to 35 GPa and 1600 K by laser‐heated diamond anvil cell experiments and first‐principles calculations. Our results showed that subducted nitrogen‐bearing silicates and fluids could not coexist with the metallic iron or iron‐rich alloys, and reacted with them to form different products at high pressure‐temperature conditions. Combining our results with previous data, we re‐determined the relative stability of iron‐light element binary compounds to 35 GPa and 1600 K to be Fe‐O > Fe‐N > Fe‐S > Fe‐C. This stability sequence contributes to explaining the observation that iron nitrides are trapped as inclusions in sulfur‐depleted lower‐mantle diamonds and are absent in sulfur‐rich ones. The recycling efficiency of subducted sedimentary nitrogen is strongly related to the availability of the metallic iron of the reduced mantle. Hydration of the metallic iron limits the storage of nitrogen in it and contributes to recycling nitrogen to Earth′s surface. Therefore, unlike subducted continental sediments, subducted marine sediments are unlikely to transport a large amount of surficial nitrogen to the metallic iron of the reduced mantle in which nitrogen could reside over long geologic periods.

    more » « less
  5. Abstract

    Hydrogen may be incorporated into nominally anhydrous minerals including bridgmanite and post‐perovskite as defects, making the Earth's deep mantle a potentially significant water reservoir. The diffusion of hydrogen and its contribution to the electrical conductivity in the lower mantle are rarely explored and remain largely unconstrained. Here we calculate hydrogen diffusivity in hydrous bridgmanite and post‐perovskite, using molecular dynamics simulations driven by machine learning potentials of ab initio quality. Our findings reveal that hydrogen diffusivity significantly increases with increasing temperature and decreasing pressure, and is considerably sensitive to hydrogen incorporation mechanism. Among the four defect mechanisms examined, (Mg + 2H)Siand (Al + H)Sishow similar patterns and yield the highest hydrogen diffusivity. Hydrogen diffusion is generally faster in post‐perovskite than in bridgmanite, and these two phases exhibit distinct diffusion anisotropies. Overall, hydrogen diffusion is slow on geological time scales and may result in heterogeneous water distribution in the lower mantle. Additionally, the proton conductivity of bridgmanite for (Mg + 2H)Siand (Al + H)Sidefects aligns with the same order of magnitude of lower mantle conductivity, suggesting that the water distribution in the lower mantle may be inferred by examining the heterogeneity of electrical conductivity.

    more » « less