skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Changes in Great Plains Low‐Level Jet Structure and Associated Precipitation Over the 20th Century
Abstract The U.S. Great Plains warm season climate is inextricably linked to the frequency and structure of the region's southerly low‐level jet. In the present‐day climate (1977–2009), low‐level jets are shown to occur on 26%, 46%, and 62% of May–September days in the northern (NGP), central (CGP) and southern (SGP) Great Plains, respectively, and account for at least 26%, 25%, and 36% of those region's precipitation during the same period. A shortcoming of previous research has been a failure to treat upper‐level dynamically coupled, or cyclone‐induced jets, separately from jets that are relatively uncoupled from synoptic flow. Differentiating between jet types is essential to proper mechanistic diagnosis and attribution of jet‐related wind, precipitation, and temperature changes to their local land or remote oceanic forcing. Using a new CERA‐20C objective dynamical jet classification dataset, this study achieves the first quantitative assessment of changes in coupled and uncoupled jets between 1901 and 2010 for NGP, CGP, and SGP. Declines in warm season jet frequency are pinpointed to July–September jets. In the NGP and CGP, both jet types have undergone significant increases in speed and height with concomitant decreases in CAPE and precipitation. NGP uncoupled jet and CGP coupled jet precipitation has decreased by 0.5 and 0.8 mm day−1, respectively, which accounts for 41%–44% of total May–September precipitation decreases between 1905–1937 and 1977–2009. A dynamic situation in which synoptic and local soil moisture changes drive opposite jet responses is discussed.  more » « less
Award ID(s):
1638936
PAR ID:
10363877
Author(s) / Creator(s):
 
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Atmospheres
Volume:
127
Issue:
3
ISSN:
2169-897X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract This first multi‐year investigation focuses on bores over the southern North China Plain during the 2015–2019 warm seasons. Bore structure depended on location with undular bores tending to occur close to the coast and non‐undular bores to the west near elevated terrain. Bores were most likely to occur during June and July when convection is active. While bore frequency over the Southern Great Plains (SGP) of U.S. is linked to the region's nocturnal low‐level jet, the bores herein were sensitive to the synoptic regime with ∼80% occurring during 4‐to‐5‐day periods under three different synoptic regimes. The bores had shorter durations than their SGP counterparts and a far wider range in their direction of propagation. Overall, these findings find regional differences in bores' frequency, movement, and structure serving an impetus for future investigations of nocturnal mesoscale convective systems and bores over China and other locations worldwide. 
    more » « less
  2. null (Ed.)
    Abstract The Great Plains (GP) southerly nocturnal low-level jet (GPLLJ) is a dominant contributor to the region’s warm-season (May–September) mean and extreme precipitation, wind energy generation, and severe weather outbreaks—including mesoscale convective systems. The spatiotemporal structure, variability, and impact of individual GPLLJ events are closely related to their degree of upper-level synoptic coupling, which varies from strong coupling in synoptic trough–ridge environments to weak coupling in quiescent, synoptic ridge environments. Here, we apply an objective dynamic classification of GPLLJ upper-level coupling and fully characterize strongly coupled (C) and relatively uncoupled (UC) GPLLJs from the perspective of the ground-based observer. Through composite analyses of C and UC GPLLJ event samples taken from the European Centre for Medium-Range Weather Forecasts’ Coupled Earth Reanalysis of the twentieth century (CERA-20C), we address how the frequency of these jet types, as well as their inherent weather- and climate-relevant characteristics—including wind speed, direction, and shear; atmospheric stability; and precipitation—vary on diurnal and monthly time scales across the southern, central, and northern subregions of the GP. It is shown that C and UC GPLLJ events have similar diurnal phasing, but the diurnal amplitude is much greater for UC GPLLJs. C GPLLJs tend to have a faster and more elevated jet nose, less low-level wind shear, and enhanced CAPE and precipitation. UC GPLLJs undergo a larger inertial oscillation (Blackadar mechanism) for all subregions, and C GPLLJs have greater geostrophic forcing (Holton mechanism) in the southern and northern GP. The results underscore the need to differentiate between C and UC GPLLJs in future seasonal forecast and climate prediction activities. 
    more » « less
  3. null (Ed.)
    Abstract A spectral analysis of Great Plains 850-hPa meridional winds (V850) from ECMWF’s coupled climate reanalysis of 1901-2010 (CERA-20C) reveals that their warm season (April-September) interannual variability peaks in May with 2-6 year periodicity, suggestive of an underlying teleconnection influence on low-level jets (LLJs). Using an objective, dynamical jet classification framework based on 500-hPa wave activity, we pursue a large scale teleconnection hypothesis separately for LLJs that are uncoupled (LLJUC) and coupled (LLJC) to the upper-level jet stream. Differentiating between jet types enables isolation of their respective sources of variability. In the South Central Plains (SCP), May LLJCs account for nearly 1.6 times more precipitation and 1.5 times greater V850 compared to LLJUCs. Composite analyses of May 250-hPa geopotential height (Z250) conditioned on LLJC and LLJUC frequencies highlight a distinct planetary-scale Rossby wave pattern with wavenumber-five, indicative of an underlying Circumglobal Teleconnection (CGT). An index of May CGT is found to be significantly correlated with both LLJC ( r = 0.62) and LLJUC ( r = −0.48) frequencies. Additionally, a significant correlation is found between May LLJUC frequency and NAO ( r = 0.33). Further analyses expose decadal scale variations in the CGT-LLJC(LLJUC) teleconnection that are linked to the PDO. Dynamically, these large scale teleconnections impact LLJ class frequency and intensity via upper-level geopotential anomalies over the western U.S. that modulate near-surface geopotential and temperature gradients across the SCP. 
    more » « less
  4. null (Ed.)
    Abstract In the context of forecasting societally impactful Great Plains low-level jets (GPLLJs), the potential added value of satellite soil moisture (SM) data assimilation (DA) is high. GPLLJs are both sensitive to regional soil moisture gradients and frequent drivers of severe weather, including mesoscale convective systems. An untested hypothesis is that SM DA is more effective in forecasts of weakly synoptically forced, or uncoupled GPLLJs, than in forecasts of cyclone-induced coupled GPLLJs. Using the NASA Unified Weather Research and Forecasting (NU-WRF) Model, 75 GPLLJs are simulated at 9-km resolution both with and without NASA Soil Moisture Active Passive SM DA. Differences in modeled SM, surface sensible (SH) and latent heat (LH) fluxes, 2-m temperature (T2), 2-m humidity (Q2), PBL height (PBLH), and 850-hPa wind speed (W850) are quantified for individual jets and jet-type event subsets over the south-central Great Plains, as well as separately for each GPLLJ sector (entrance, core, and exit). At the GPLLJ core, DA-related changes of up to 5.4 kg m −2 in SM can result in T2, Q2, LH, SH, PBLH, and W850 differences of 0.68°C, 0.71 g kg −2 , 59.9 W m −2 , 52.4 W m −2 , 240 m, and 4 m s −1 , respectively. W850 differences focus along the jet axis and tend to increase from south to north. Jet-type differences are most evident at the GPLLJ exit where DA increases and decreases W850 in uncoupled and coupled GPLLJs, respectively. Data assimilation marginally reduces negative wind speed bias for all jets, but the correction is greater for uncoupled GPLLJs, as hypothesized. 
    more » « less
  5. Abstract In the U.S. Great Plains (GP), diagnosing precipitation variability is key in developing an understanding of the present and future availability of water in the region. Building on previous work investigating U.S. GP pluvial years, this study uses ERA twentieth century (ERA-20C) reanalysis data to investigate key circulation anomalies driving GP precipitation anomalies during a subset of GP pluvial years (called in this paper Pattern pluvial years). With previous research showing links between tropical Pacific sea surface temperature (SST) anomalies and GP climate variability, this study diagnoses the key circulation anomalies through an analysis of SSTs and their influence on the atmosphere. Results show that during Pattern southern Great Plains (SGP) pluvial years, central tropical Pacific SST anomalies are coincident with key atmospheric anomalies across the Pacific basin and North America. During northern Great Plains (NGP) Pattern pluvial years, no specific pattern of oceanic anomalies emerges that forces the circulation anomaly feature inherent in specific NGP pluvial years. Utilizing the results for SGP pluvial years, a conceptual model is developed detailing the identified pathway for the occurrence of circulation patterns that are favorable for pluvial years over the SGP. Overall, results from this study show the importance of the identified SGP atmospheric anomaly signal and the potential for predictability of such events. 
    more » « less