skip to main content

Title: How Does Viscosity Contrast Influence Phase Mixing and Strain Localization?

Ultramylonites—intensely deformed rocks with fine grain sizes and well‐mixed mineral phases—are thought to be a key component of Earth‐like plate tectonics, because coupled phase mixing and grain boundary pinning enable rocks to deform by grain‐size‐sensitive, self‐softening creep mechanisms over long geologic timescales. In isoviscous two‐phase composites, “geometric” phase mixing occurs via the sequential formation, attenuation (stretching), and disaggregation of compositional layering. However, the effects of viscosity contrast on the mechanisms and timescales for geometric mixing are poorly understood. Here, we describe a series of high‐strain torsion experiments on nonisoviscous calcite‐fluorite composites (viscosity contrast,ηca/ηfl≈ 200) at 500°C, 0.75 GPa confining pressure, and 10−6–10−4 s−1shear strain rate. At low to intermediate shear strains (γ ≤ 10), polycrystalline domains of the individual phases become sheared and form compositional layering. As layering develops, strain localizes into the weaker phase, fluorite. Strain partitioning impedes mixing by reducing the rate at which the stronger (calcite) layers deform, attenuate, and disaggregate. Even at very large shear strains (γ ≥ 50), grain‐scale mixing is limited, and thick compositional layers are preserved. Our experiments (1) demonstrate that viscosity contrasts impede mechanical phase mixing and (2) highlight the relative inefficiency of mechanical mixing. Nevertheless, by employing laboratory flow laws, we show that “ideal” conditions for mechanical phase mixing may be found in the wet middle to lower continental crust and in the dry mantle lithosphere, where quartz‐feldspar and olivine‐pyroxene viscosity contrasts are minimized, respectively.

more » « less
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Solid Earth
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    To understand the effects of secondary minerals on changes in the mechanical properties of upper mantle rocks due to phase mixing, we conducted high‐strain torsion experiments on aggregates of iron‐rich olivine + orthopyroxene (opx) with opx volume fractions offopx = 0.15, 0.26, and 0.35. For samples with larger amounts of opx,fopx = 0.26 and 0.35, the value of the stress exponent decreases with increasing strain fromn ≈ 3 for γ  5 ton ≈ 2 for 5  γ  25, indicating that the deformation mechanism changes as strain increases. In contrast, for samples withfopx = 0.15, the stress exponent is constant atn ≈ 3.3 for 1  γ  25, suggesting that no change in deformation mechanism occurs with increasing strain for samples with smaller amounts of opx. The microstructures of samples with larger amounts of opx provide insight into the change in deformation mechanism derived from the mechanical data. Elongated grains align subparallel to the shear direction for samples of all three compositions deformed to lower strains. However, strain weakening with grain size reduction and the formation of a thoroughly mixed, fine‐grained texture only develops in samples withfopx = 0.26 and 0.35 deformed to higher strains of γ  16. These mechanical and associated microstructural properties imply that rheological weakening due to phase mixing only occurs in the samples with largerfopx, which is an important constraint for understanding strain localization in the upper mantle of Earth.

    more » « less
  2. Abstract

    To study the mechanical behavior of polymineralic rocks, we performed deformation experiments on two‐phase aggregates of olivine (Ol) + ferropericlase (Per) with periclase fractions (fPer) between 0.1 and 0.8. Each sample was deformed in torsion atT = 1523 K,P = 300 MPa at a constant strain rate to a final shear strain ofγ = 6 to 7. The stress‐strain data and calculated values of the stress exponent,n, indicate that Ol in our samples deformed by dislocation‐accommodated sliding along grain interfaces while Per deformed via dislocation creep. At shear strains ofγ < 1, the strengths of samples withfPer > 0.5 match model predictions for both phases deforming at the same stress, the lower‐strength bound for two‐phase materials, while the strengths of samples withfPer < 0.5 are greater than predicted by models for both phases deforming at the same strain rate, the upper‐strength bound. These observations suggest a transition from a weak‐phase supported to a strong‐phase supported regime with decreasingfPer. Aboveγ = 4, however, the strength of all two‐phase samples is greater than those predicted by either the uniform‐stress or the uniform‐strain rate bound. We hypothesize that the high strengths in the Ol + Per system are due to the presence of phase boundaries in two‐phase samples, for which deformation is rate limited by dislocation motion along interfacial boundaries. This observation contrasts with the mechanical behavior of samples consisting of Ol + pyroxene, which are weaker, possibly due to impurities at phase boundaries.

    more » « less
  3. Abstract

    We performed deformation and grain growth experiments on natural olivine aggregates with olivine water contents (COH = 600 ± 300 H/106 Si) similar to upper mantle olivine, at 1000–1200°C and 1,400 ± 100 MPa confining pressure. Our experiments differ from published grain growth studies in that most were (1) conducted on natural olivine cores rather than hot‐pressed aggregates and (2) dynamically recrystallized prior to or during grain growth. We combine our results with similar experiments performed at 1200–1300°C and fit the data to a grain growth relationship, yielding a growth exponent (p) of 3.2, activation energy (EG) 620 ± 145 kJ mol1(570 ± 145 kJ mol1when accounting for the role of temperature on water content), activation volume (VG) ~5 × 10−6 m3mol1, and rate constant (k0) 1.8 × 103 mp s−1. OurEGis within uncertainty of that predicted for dislocation creep of wet olivine (E* = 480 ± 40 kJ mol−1). Grain size in strain rate‐stepping samples adjusted to the olivine piezometer within 1.3–7.9% strain. The active grain boundary migration processes during deformation and dynamic recrystallization affect the kinetics of postdeformation grain growth, as grain boundary migration driven by strain energy density (ρGBM) may delay the onset of grain growth driven by interfacial energy (γGBM). We compared our postdeformation grain growth rates with data from previously published hydrostatic annealing experiments on synthetic olivine. At geologic timescales, the growth rates are much slower than predicted by the existing wet olivine grain growth law.

    more » « less
  4. Abstract

    To study the microstructural evolution of polymineralic rocks, we performed deformation experiments on two‐phase aggregates of olivine (Ol) + ferropericlase (Per) with periclase fractions (fPer) between 0.1 and 0.8. Additionally, single‐phase samples of both Ol and Per were deformed under the same experimental conditions to facilitate comparison of the microstructures in two‐phase and single‐phase materials. Each sample was deformed in torsion atT = 1523 K,P = 300 MPa at a constant strain rate up to a final shear strain of γ = 6 to 7. Microstructural developments, analyzed via electron backscatter diffraction (EBSD), indicate differences in both grain size and crystalline texture between single‐ and two‐phase samples. During deformation, grain size approximately doubled in our single‐phase samples of Ol and Per but remained unchanged or decreased in two‐phase samples. Zener‐pinning relationships fit to the mean grain sizes in each phase for samples with 0.1 ≤ fPer≤ 0.5 and for those with 0.8 ≥ fPer ≥ 0.5 demonstrate that the grain size of the primary phase is controlled by phase‐boundary pinning. Crystallographic preferred orientations, determined for both phases from EBSD data, are significantly weaker in the two‐phase materials than in the single‐phase materials.

    more » « less
  5. Abstract

    A simple and facile method was developed to fabricate functional bulk barium titanate (BaTiO3,BT) ceramics using the paste extrusion 3D printing technique. TheBTceramic is a lead‐free ferroelectric material widely used for various applications in sensors, energy storage, and harvesting. There are several traditional methods (eg, tape casting) to process bulkBTceramics but they have disadvantages such as difficult handing without shape deformation, demolding, complex geometric shapes, expansive molds, etc. In this research, we utilized the paste extrusion 3D printing technique to overcome the traditional issues and developed printable ceramic suspensions containingBTceramic powder, polyvinylidene fluoride (PVDF), N,N‐dimethylformamide (DMF) through simple mixing method and chemical formulation. ThisPVDFsolution erformed multiple roles of binder, plasticizer, and dispersant for excellent manufacturability while providing high volume percent and density of the final bulk ceramic. Based on empirical data, it was found that the maximum binder ratio with good viscosity and retention for desired geometry is 1:8.8, while the maximumBTcontent is 35.45 vol% (77.01 wt%) in order to achieve maximum density of 3.93 g/cm3(65.3%) for 3D printedBTceramic. Among different sintering temperatures, it was observed that the sinteredBTceramic at 1400°C had highest grain growth and tetragonality which affected high performing piezoelectric and dielectric properties, 200 pC/N and 4730 at 103 Hz respectively. This paste extrusion 3D printing technique and simple synthesis method for ceramic suspensions are expected to enable rapid massive production, customization, design flexibility of the bulk piezoelectric and dielectric devices for next generation technology.

    more » « less