skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Novel genome characteristics contribute to the invasiveness of Phragmites australis (common reed)
Abstract The rapid invasion of the non‐nativePhragmites australis(Poaceae, subfamily Arundinoideae) is a major threat to native wetland ecosystems in North America and elsewhere. We describe the first reference genome forP. australisand compare invasive (ssp.australis) and native (ssp.americanus) genotypes collected from replicated populations across the Laurentian Great Lakes to deduce genomic bases driving its invasive success. Here, we report novel genomic features including aPhragmiteslineage‐specific whole genome duplication, followed by gene loss and preferential retention of genes associated with transcription factors and regulatory functions in the remaining duplicates. Comparative transcriptomic analyses revealed that genes associated with biotic stress and defence responses were expressed at a higher basal level in invasive genotypes, but native genotypes showed a stronger induction of defence responses when challenged by a fungal endophyte. The reference genome and transcriptomes, combined with previous ecological and environmental data, add to our understanding of mechanisms leading to invasiveness and support the development of novel, genomics‐assisted management approaches for invasivePhragmites.  more » « less
Award ID(s):
1923589 1616827
PAR ID:
10363942
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Molecular Ecology
Volume:
31
Issue:
4
ISSN:
0962-1083
Page Range / eLocation ID:
p. 1142-1159
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Societal Impact StatementThe invasive speciesS. alternifloraandP. australisare fast growing coastal wetland plants sequestering large amounts of carbon in the soil and protect coastlines against erosion and storm surges. In this global analysis, we found thatSpartinaandPhragmitesincrease methane but not nitrous oxide emissions, withPhragmiteshaving a lesser effect. The impact of the invasive species on emissions differed greatly among different types of native plant groups, providing valuable information to managers and policymakers during coastal wetland planning and restoration efforts. Further, our estimated net emissions per wetland plant group facilitate regional and national blue carbon estimates. SummaryGlobally,Spartina alternifloraandPhragmites australisare among the most pervasive invasive plants in coastal wetland ecosystems. Both species sequester large amounts of atmospheric carbon dioxide (CO2) and biogenic carbon in soils but also support production and emission of methane (CH4). In this study, we investigated the magnitude of their net greenhouse gas (GHG) release from invaded and non‐invaded habitats.We conducted a meta‐analysis of GHG fluxes associated with these two species and related soil carbon content and plant biomass in invaded coastal wetlands.Our results show that both invasive species increase CH4fluxes compared to uninvaded coastal wetlands, but they do not significantly affect CO2and N2O fluxes. The magnitude of emissions fromSpartinaandPhragmitesdiffers among native habitats. GHG fluxes, soil carbon and plant biomass ofSpartina‐invaded habitats were highest compared to uninvaded mudflats and succulent forb‐dominated wetlands, while being lower compared to uninvaded mangroves (except for CH4).This meta‐analysis highlights the important role of individual plant traits as drivers of change by invasive species on plant‐mediated carbon cycles. 
    more » « less
  2. Abstract Invasive species offer outstanding opportunities to identify the genomic sources of variation that contribute to rapid adaptation, as well as the genetic mechanisms facilitating invasions. The Eurasian plant yellow starthistle (Centaurea solstitialis) is highly invasive in North and South American grasslands and known to have evolved increased growth and reproduction during invasion. Here, we develop new genomic resources for C. solstitialis and map the genetic basis of invasiveness traits. We present a chromosome-scale (1N = 8) reference genome using PacBio CLR and Dovetail Omni-C technologies, and functional gene annotation using RNAseq. We find repeat structure typical of the family Asteraceae, with over 25% of gene content derived from ancestral whole-genome duplications (paleologs). Using an F2 mapping population derived from a cross between native and invading parents, with a restriction site-associated DNA (RAD)-based genetic map, we validate the assembly and identify 13 quantitative trait loci underpinning size traits that have evolved during invasion. We find evidence that large effects of quantitative trait loci may be associated with structural variants between native and invading genotypes, including a variant with an overdominant and pleiotropic effect on key invader traits. We also find evidence of significant paleolog enrichment under two quantitative trait loci. Our results add to growing evidence of the importance of structural variants in evolution, and to understanding of the rapid evolution of invaders. 
    more » « less
  3. Abstract Introduced species may homogenize biotic communities. Whether this homogenization can erase latitudinal patterns of species diversity and composition has not been well studied. We examined this by comparing nematode and microbial communities in stands of nativePhragmites australisand exoticSpartina alterniflorain coastal wetlands across 18° of latitude in China. We found clear latitudinal clines in nematode diversity and functional composition, and in microbial composition, for soils collected from nativeP. australis. These latitudinal patterns were weak or absent for soils collected from nearby stands of the exoticS. alterniflora. Climatic and edaphic variables varied across latitude in similar ways in both community types. InP. australisthere were strong correlations between community structure and environmental variables, whereas inS. alterniflorathese correlations were weak. These results suggest that the invasion ofS. alterniflorainto the Chinese coastal wetlands has caused profound biotic homogenization of soil communities across latitude. We speculate that the variation inP. australisnematode and microbial communities across latitude is primarily driven by geographic variation in plant traits, but that such variation in plant traits is largely lacking for the recently introduced exoticS. alterniflora. These results indicate that widespread exotic species can homogenize nematode communities at large spatial scales. 
    more » « less
  4. PREMISEBiological invasions increasingly threaten native biodiversity and ecosystem services. One notable example is the common reed,Phragmites australis, which aggressively invades North American salt marshes. Elevated atmospheric CO2and nitrogen pollution enhance its growth and facilitate invasion becauseP. australisresponds more strongly to these enrichments than do native species. We investigated how modifications to stomatal features contribute to strong photosynthetic responses to CO2and nitrogen enrichment inP. australisby evaluating stomatal shifts under experimental conditions and relating them to maximal stomatal conductance (gwmax) and photosynthetic rates. METHODSPlants were grownin situin open‐top chambers under ambient and elevated atmospheric CO2(eCO2) and porewater nitrogen (Nenr) in a Chesapeake Bay tidal marsh. We measured light‐saturated carbon assimilation rates (Asat) and stomatal characteristics, from which we calculatedgwmaxand determined whether CO2and Nenraltered the relationship betweengwmaxandAsat. RESULTSeCO2and Nenrenhanced bothgwmaxandAsat, but to differing degrees;gwmaxwas more strongly influenced by Nenrthrough increases in stomatal density whileAsatwas more strongly stimulated by eCO2. There was a positive relationship betweengwmaxandAsatthat was not modified by eCO2or Nenr, individually or in combination. CONCLUSIONSChanges in stomatal features co‐occur with previously described responses ofP. australisto eCO2and Nenr. Complementary responses of stomatal length and density to these global change factors may facilitate greater stomatal conductance and carbon gain, contributing to the invasiveness of the introduced lineage. 
    more » « less
  5. Abstract Seedling recruitment is an important mode of establishment utilized by many invasive plants. In widespread invasive plants, regional variation in the rates of seedling recruitment can contribute to differences in invasion intensity across regions. In this study, we examined regional variation in reproductive traits and seedling performance in a cosmopolitan invasive wetland grass,Phragmites australis. We tested whether nitrogen levels and regions with different histories and intensities of invasion would affect reproductive traits and seedling performance. We sampled invasivePhragmitesinflorescences from 34 populations across three regions in North America: The Northeast (old, most intense invasion), the Midwest (recent, intense invasion), and Southeast (recent, sparse invasion). We hypothesized that NortheastPhragmitespopulations would have the highest reproductive output and seedling performance, and that populations experiencing high nitrogen pollution would have higher reproductive output and seedling performance under high nitrogen conditions. We found that populations in the Northeast had the highest inflorescence mass, as expected. We also found that despite sparse distribution ofPhragmitesin the Southeast, populations from the Southeast displayed a high potential for sexual reproduction. However, increasing watershed-level nitrogen (kg/km2) decreased percent seed germination in Southeastern populations, suggesting that Southeastern populations are sensitive to rising nitrogen levels. While elevated nitrogen improved seedling performance through increased belowground growth in SoutheasternPhragmitesseedlings, elevated nitrogen decreased belowground growth in Midwestern seedlings. These results suggest that the southeastern region of North America may be primed to become an emergent invasion front ofPhragmites, warranting more research into the possible management ofPhragmitesspread in the region. 
    more » « less