skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Application of Symmetric Instability Parameterization in the Coastal and Regional Ocean Community Model (CROCO)
Abstract As one kind of submesoscale instability, symmetric instability (SI) of the ocean surface mixed layer (SML) plays a significant role in modulating the SML energetics and material transport. The small spatial scales of SI,O(10 m–1 km), are not resolved by current climate ocean models and most regional models. This study describes comparisons in an idealized configuration of the SI parameterization scheme proposed by Bachman et al. (2017,https://doi.org/10.1016/j.ocemod.2016.12.003) (SI‐parameterized) versus the K‐Profile Parameterization scheme (SI‐neglected) as compared to a SI‐permitting model; all variants use the Coastal and Regional Ocean Community Model version of the Regional Ocean Modeling System and this study also serves to introduce the SI parameterization in that model. In both the SI‐parameterized and SI‐permitting models, the geostrophic shear production is enhanced and anticyclonic potential vorticity is reduced versus the SI‐neglected model. A comprehensive comparison of the energetics (geostrophic shear production, vertical buoyancy flux), mixed layer thickness, potential vorticity, and tracer redistribution indicate that all these variables in the SI‐parameterized case have structures closer to the SI‐permitting case in contrast to the SI‐neglected one, demonstrating that the SI scheme qualitatively improves representation of the impacts of SI. This work builds toward applying the SI scheme in a realistic regional or climate model.  more » « less
Award ID(s):
1655221
PAR ID:
10363950
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Advances in Modeling Earth Systems
Volume:
13
Issue:
3
ISSN:
1942-2466
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract In tidewater glacier fjords, subglacial discharge drives a significant mixing mechanism near glacier fronts and drives a strong exchange flow. Numerous studies (Cowton et al., 2015,https://doi.org/10.1002/2014jc010324; Slater et al., 2017,https://doi.org/10.1002/2016gl072374) have utilized a parameterization for buoyant plume theory to force fjord scales systems, but neglect to parameterize the outflowing of the plume away from the glacial wall after it has reached its neutral density. In this study, a new model framework, ROMS‐ICEPLUME, is developed to parameterize the rising and initial outflowing stage of subglacial discharge plumes in the Regional Ocean Modeling System. The coupled model applies a novel parameterization algorithm to prescribe the velocity and vertical extent of the outflowing plume, which reduces numerical instability and improves model performance. The model framework is tested with a quasi‐realistic forcing using observations of a subglacial discharge plume hydrographic surveys collected from a Greenland fjord. We find that the new model framework is able to reproduce the strong outflowing plume and the compensating inflow at depth, with a spatial structure that correlates well with in‐situ observations. On the other hand, the model framework without the new parameterization algorithm fails to capture the outflowing plume structure. Thus, our new framework for parameterizing subglacial discharge plumes is an improvement from previous coupled model frameworks, and is a promising tool toward advancing our understanding of circulation in tidewater glacier fjords. 
    more » « less
  2. Abstract We show that atmospheric gravity waves can generate plasma ducts and irregularities in the plasmasphere using the coupled SAMI3/WACCM‐X model. We find the equatorial electron density is irregular as a function of longitude which is consistent with CRRES measurements (Clilverd et al., 2007,https://doi.org/10.1029/2007ja012416). We also find that plasma ducts can be generated forL‐shells in the range 1.5–3.0 with lifetimes of ∼ 0.5 hr; this is in line with observations of ducted VLF wave propagation with lifetimes of 0.5–2.0 hr (Clilverd et al., 2008,https://doi.org/10.1029/2007ja012602; Singh et al., 1998,https://doi.org/10.1016/s1364-6826(98)00001-7). 
    more » « less
  3. Abstract Wave breaking induced bubbles contribute a significant part of air‐sea gas fluxes. Recent modeling of the sea state dependent CO2flux found that bubbles contribute up to ∼40% of the total CO2air‐sea fluxes (Reichl & Deike, 2020,https://doi.org/10.1029/2020gl087267). In this study, we implement the sea state dependent bubble gas transfer formulation of Deike and Melville (2018,https://doi.org/10.1029/2018gl078758) into a spectral wave model (WAVEWATCH III) incorporating the spectral modeling of the wave breaking distribution from Romero (2019,https://doi.org/10.1029/2019gl083408). We evaluate the accuracy of the sea state dependent gas transfer parameterization against available measurements of CO2gas transfer velocity from 9 data sets (11 research cruises, see Yang et al. (2022,https://doi.org/10.3389/fmars.2022.826421)). The sea state dependent parameterization for CO2gas transfer velocity is consistent with observations, while the traditional wind‐only parameterization used in most global models slightly underestimates the observations of gas transfer velocity. We produce a climatology of the sea state dependent gas transfer velocity using reanalysis wind and wave data spanning 1980–2017. The climatology shows that the enhanced gas transfer velocity occurs frequently in regions with developed sea states (with strong wave breaking and high significant wave height). The present study provides a general sea state dependent parameterization for gas transfer, which can be implemented in global coupled models. 
    more » « less
  4. Abstract Recent field studies have shown that the presence of ash in the atmosphere can produce measurable attenuation of Global Positioning System (GPS) signals (Aranzulla et al., 2013,https://doi.org/10.1007/s10291-012-0294-4; Larson, 2013,https://doi.org/10.1002/grl.50556; Larson et al., 2017,https://doi.org/10.1016/j.jvolgeores.2017.04.005). The ability to detect plumes using GPS is appealing because many active volcanoes are already instrumented with high‐quality receivers. However, analyses using a Ralyeigh approximation have shown that the large attenuations cannot be explained by the scattering and absorption associated with ash or hydrometeors alone. Here, we show that the extinction of GPS signals, which fall into the L‐band of the electromagnetic spectrum, may be exacerbated significantly by excess surface charge on pyroclasts. Indeed, volcanic eruptions are often accompanied by a range of electrostatic processes, leading, in some cases, to spectacular lightning storms. We use a modified Mie scattering model to demonstrate that electrostatic effects can increase the extinction of L‐band radiation by up to an order of magnitude, producing attenuations consistent with those observed in the field. Thus, future work involving GPS as a tool to remotely probe plumes must take into account the electrification of ash in radiative transfer models. Additionally, we propose that the sensitivity of GPS to particle charging may catalyze the development of new techniques to explore electrostatic processes in plumes, especially if GPS measurements are complemented with millimeter‐wave RADAR measurements. 
    more » « less
  5. Submesoscale fronts with large horizontal buoyancy gradients and$$O(1)$$Rossby numbers are common in the upper ocean. These fronts are associated with large vertical transport and are hotspots for biological activity. Submesoscale fronts are susceptible to symmetric instability (SI) – a form of stratified inertial instability which can occur when the potential vorticity is of the opposite sign to the Coriolis parameter. Here, we use a weakly nonlinear stability analysis to study SI in an idealised frontal zone with a uniform horizontal buoyancy gradient in thermal wind balance. We find that the structure and energetics of SI strongly depend on the front strength, defined as the ratio of the horizontal buoyancy gradient to the square of the Coriolis frequency. Vertically bounded non-hydrostatic SI modes can grow by extracting potential or kinetic energy from the balanced front and the relative importance of these energy reservoirs depends on the front strength and vertical stratification. We describe two limiting behaviours as ‘slantwise convection’ and ‘slantwise inertial instability’ where the largest energy source is the buoyancy flux and geostrophic shear production, respectively. The growing linear SI modes eventually break down through a secondary shear instability, and in the process transport considerable geostrophic momentum. The resulting breakdown of thermal wind balance generates vertically sheared inertial oscillations and we estimate the amplitude of these oscillations from the stability analysis. We finally discuss broader implications of these results in the context of current parameterisations of SI. 
    more » « less