skip to main content

Title: X-Ray Emission from Candidate Stellar Merger Remnant TYC 2597-735-1 and Its Blue Ring Nebula
Abstract

Tight binary or multiple-star systems can interact through mass transfer and follow vastly different evolutionary pathways than single stars. The star TYC 2597-735-1 is a candidate for a recent stellar merger remnant resulting from a coalescence of a low-mass companion with a primary star a few thousand years ago. This violent event is evident in a conical outflow (“Blue Ring Nebula”) emitting in UV light and surrounded by leading shock filaments observed in Hαand UV emission. From Chandra data, we report the detection of X-ray emission from the location of TYC 2597-735-1 with a luminositylog(LX/Lbol)=5.5. Together with a previously reported period of ~14 days, this indicates ongoing stellar activity and the presence of strong magnetic fields on TYC 2597-735-1. Supported by stellar evolution models of merger remnants, we interpret the inferred stellar magnetic field as dynamo action associated with a newly formed convection zone in the atmosphere of TYC 2597-735-1, though internal shocks at the base of an accretion-powered jet cannot be ruled out. We speculate that this object will evolve into an FK Com–type source, i.e., a class of rapidly spinning magnetically active stars for which a merger origin has been more » proposed but for which no relic accretion or large-scale nebula remains visible. We also detect likely X-ray emission from two small regions close to the outer shock fronts in the Blue Ring Nebula, which may arise from inhomogeneities either in the circumstellar medium or in the mass and velocity distribution in the merger-driven outflow.

« less
Authors:
; ; ; ; ;
Publication Date:
NSF-PAR ID:
10364017
Journal Name:
The Astronomical Journal
Volume:
163
Issue:
4
Page Range or eLocation-ID:
Article No. 173
ISSN:
0004-6256
Publisher:
DOI PREFIX: 10.3847
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We use Hubble Space Telescope Wide Field Camera 3 G102 and G141 grism spectroscopy to measure rest-frame optical emission-line ratios of 533 galaxies atz∼ 1.5 in the CANDELS LyαEmission at Reionization survey. We compare [Oiii]/Hβversus [Sii]/(Hα+ [Nii]) as an “unVO87” diagram for 461 galaxies and [Oiii]/Hβversus [Neiii]/[Oii] as an “OHNO” diagram for 91 galaxies. The unVO87 diagram does not effectively separate active galactic nuclei (AGN) and [Nev] sources from star-forming galaxies, indicating that the unVO87 properties of star-forming galaxies evolve with redshift and overlap with AGN emission-line signatures atz> 1. The OHNO diagram does effectively separate X-ray AGN and [Nev]-emitting galaxies from the rest of the population. We find that the [Oiii]/Hβline ratios are significantly anticorrelated with stellar mass and significantly correlated withlog(LHβ), while [Sii]/(Hα+ [Nii]) is significantly anticorrelated withlog(LHβ). Comparison with MAPPINGS V photoionization models indicates that these trends are consistent with lower metallicity and higher ionization in low-mass and high-star formation rate (SFR) galaxies. We do not find evidence for redshift evolution of the emission-line ratios outside of the correlations with mass and SFR. Our results suggest that the OHNO diagram of [Oiii]/Hβversus [Neiii]/[Oii] willmore »be a useful indicator of AGN content and gas conditions in very high-redshift galaxies to be observed by the James Webb Space Telescope.

    « less
  2. Abstract

    We present a Keck/MOSFIRE rest-optical composite spectrum of 16 typical gravitationally lensed star-forming dwarf galaxies at 1.7 ≲z≲ 2.6 (zmean= 2.30), all chosen independent of emission-line strength. These galaxies have a median stellar mass oflog(M*/M)med=8.290.43+0.51and a median star formation rate ofSFRHαmed=2.251.26+2.15Myr1. We measure the faint electron-temperature-sensitive [Oiii]λ4363 emission line at 2.5σ(4.1σ) significance when considering a bootstrapped (statistical-only) uncertainty spectrum. This yields a direct-method oxygen abundance of12+log(O/H)direct=7.880.22+0.25(0.150.06+0.12Z). We investigate the applicability at highzof locally calibrated oxygen-based strong-line metallicity relations, finding that the local reference calibrations of Bian et al. best reproduce (≲0.12 dex) our composite metallicity at fixed strong-line ratio. At fixedM*, our composite is well represented by thez∼ 2.3 direct-method stellar mass—gas-phase metallicity relation (MZR) of Sanders et al. When comparing to predicted MZRs from the IllustrisTNG and FIRE simulations, having recalculated our stellar masses with more realistic nonparametric star formation histories(log(M*/M)med=8.920.22+0.31), we find excellent agreement with the FIRE MZR. Our composite is consistent with no metallicity evolution, atmore »fixedM*and SFR, of the locally defined fundamental metallicity relation. We measure the doublet ratio [Oii]λ3729/[Oii]λ3726 = 1.56 ± 0.32 (1.51 ± 0.12) and a corresponding electron density ofne=10+215cm3(ne=10+74cm3) when considering the bootstrapped (statistical-only) error spectrum. This result suggests that lower-mass galaxies have lower densities than higher-mass galaxies atz∼ 2.

    « less
  3. Abstract

    We measure the molecular-to-atomic gas ratio,Rmol, and the star formation rate (SFR) per unit molecular gas mass, SFEmol, in 38 nearby galaxies selected from the Virgo Environment Traced in CO (VERTICO) survey. We stack ALMA12CO (J= 2−1) spectra coherently using Hivelocities from the VIVA survey to detect faint CO emission out to galactocentric radiirgal∼ 1.2r25. We determine the scale lengths for the molecular and stellar components, finding a ∼3:5 relation compared to ∼1:1 in field galaxies, indicating that the CO emission is more centrally concentrated than the stars. We computeRmolas a function of different physical quantities. While the spatially resolvedRmolon average decreases with increasing radius, we find that the mean molecular-to-atomic gas ratio within the stellar effective radiusRe,Rmol(r<Re), shows a systematic increase with the level of Hi, truncation and/or asymmetry (HIperturbation). Analysis of the molecular- and the atomic-to-stellar mass ratios withinRe,Rmol(r<Re)andRatom(r<Re), shows that VERTICO galaxies have increasingly lowerRatom(r<Re)for larger levels of HIperturbation (compared to field galaxies matched in stellar mass), but no significant change inRmol(r<Re). We also measure a clear systematic decrease of the SFEmolwithinRe, SFEmol(r<Re),more »with increasingly perturbed Hi. Therefore, compared to field galaxies from the field, VERTICO galaxies are more compact in CO emission in relation to their stellar distribution, but increasingly perturbed atomic gas increases theirRmoland decreases the efficiency with which their molecular gas forms stars.

    « less
  4. Abstract

    We use ALMA observations of CO(2–1) in 13 massive (M*≳ 1011M) poststarburst galaxies atz∼ 0.6 to constrain the molecular gas content in galaxies shortly after they quench their major star-forming episode. The poststarburst galaxies in this study are selected from the Sloan Digital Sky Survey spectroscopic samples (Data Release 14) based on their spectral shapes, as part of the Studying QUenching at Intermediate-z Galaxies: Gas, anguLarmomentum, and Evolution (SQuIGGLE) program. Early results showed that two poststarburst galaxies host large H2reservoirs despite their low inferred star formation rates (SFRs). Here we expand this analysis to a larger statistical sample of 13 galaxies. Six of the primary targets (45%) are detected, withMH2109M. Given their high stellar masses, this mass limit corresponds to an average gas fraction offH2MH2/M*7%or ∼14% using lower stellar masses estimates derived from analytic, exponentially declining star formation histories. The gas fraction correlates with theDn4000 spectral index, suggesting that the cold gas reservoirs decrease with time since burst, as found in local K+A galaxies. Star formation histories derived from flexible stellar population synthesis modeling support thismore »empirical finding: galaxies that quenched ≲150 Myr prior to observation host detectable CO(2–1) emission, while older poststarburst galaxies are undetected. The large H2reservoirs and low SFRs in the sample imply that the quenching of star formation precedes the disappearance of the cold gas reservoirs. However, within the following 100–200 Myr, theSQuIGGLEgalaxies require the additional and efficient heating or removal of cold gas to bring their low SFRs in line with standard H2scaling relations.

    « less
  5. Abstract

    We present a multiwavelength analysis of the galaxy cluster SPT-CL J0607-4448 (SPT0607), which is one of the most distant clusters discovered by the South Pole Telescope atz= 1.4010 ± 0.0028. The high-redshift cluster shows clear signs of being relaxed with well-regulated feedback from the active galactic nucleus (AGN) in the brightest cluster galaxy (BCG). Using Chandra X-ray data, we construct thermodynamic profiles and determine the properties of the intracluster medium. The cool-core nature of the cluster is supported by a centrally peaked density profile and low central entropy (K0=189+11keV cm2), which we estimate assuming an isothermal temperature profile due to the limited spectral information given the distance to the cluster. Using the density profile and gas cooling time inferred from the X-ray data, we find a mass-cooling rateṀcool=10060+90Myr−1. From optical spectroscopy and photometry around the [Oii] emission line, we estimate that the BCG star formation rate isSFR[OII]=1.70.6+1.0Myr−1, roughly two orders of magnitude lower than the predicted mass-cooling rate. In addition, using ATCA radio data at 2.1 GHz, we measure a radio jet powerPcav=3.21.3+2.1×1044erg s−1, which is consistent withmore »the X-ray cooling luminosity (Lcool=1.90.5+0.2×1044erg s−1withinrcool= 43 kpc). These findings suggest that SPT0607 is a relaxed, cool-core cluster with AGN-regulated cooling at an epoch shortly after cluster formation, implying that the balance between cooling and feedback can be reached quickly. We discuss the implications for these findings on the evolution of AGN feedback in galaxy clusters.

    « less