skip to main content


Title: Increased Fractured Rock Permeability After Percolation Despite Limited Crack Growth
Abstract

Fractured rock permeability can increase by crack extension that creates additional flow pathways or by increases in crack openings that increase crack transmissivity. Understanding the partitioning between these two mechanisms during rock deformation is critical for conceptual models of fluid flow and transport in crystalline rocks and sedimentary layers with low matrix permeability and for the hydromechanics of crustal rocks. Using ice as a model for rock, new systematic experiments reveal that when subject to uniaxial loading at a constant strain rate, crack density remains nearly constant after the onset of percolation even while permeability increases, indicating that after the onset of percolation the increase in permeability is primarily due to the opening of existing cracks rather than the extension of cracks. These observations have implications for conceptual models of fractured rock permeability that often focus on the evolution of permeability with changing fracture density rather than changing fracture transmissivity and for attempts to link fractured rock permeability to seismic properties that often dominantly consider changes in crack density rather than crack apertures.

 
more » « less
NSF-PAR ID:
10364075
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Solid Earth
Volume:
125
Issue:
8
ISSN:
2169-9313
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The inferred narrow range of crack densities of crustal rocks at depths >1 km has been interpreted to imply that crack networks at depth are in a state of criticality with densities restricted to values near the percolation threshold. Their state is critical in the sense that at crack densities above this threshold, both the permeability and compliance increase significantly, allowing pore fluids to disperse and stresses to relax, limiting further crack growth. This analysis assumes that the crack density percolation threshold is similar to that of crack networks composed of randomly located cracks, yet network structure due to crack growth processes is known to impact the percolation threshold. Using ice as a model material for rock, we show experimentally that near the brittle‐to‐ductile transition, the crack density at the percolation threshold depends on the strain rate. At higher strain rates, the strain at percolation is scale invariant, and the crack density percolation threshold is similar to that of random crack networks. At lower strain rates, the strain at percolation increases with sample size, and percolation occurs at crack densities significantly below that at which percolation occurs in random crack networks. Near the brittle‐to‐ductile transition in the deeper crust, crack growth and coalescence may depend on strain rate, changing the nature of crack network criticality.

     
    more » « less
  2. Vaselli, Orlando (Ed.)
    We investigate deformation mechanics of fracture networks in unsaturated fractured rocks from subsurface conventional detonation using dynamic noble gas measurements and changes in air permeability. We dynamically measured the noble gas isotopic composition and helium exhalation of downhole gas before and after a large subsurface conventional detonation. These noble gas measurements were combined with measurements of the subsurface permeability field from 64 discrete sampling intervals before and after the detonation and subsurface mapping of fractures in borehole walls before well completion. We saw no observable increase in radiogenic noble gas release from either an isotopic composition or a helium exhalation point of view. Large increases in permeability were observed in 13 of 64 discrete sampling intervals. Of the sampling intervals which saw large increases in flow, only two locations did not have preexisting fractures mapped at the site. Given the lack of noble gas release and a clear increase in permeability, we infer that most of the strain accommodation of the fractured media occurred along previously existing fractures, rather than the creation of new fractures, even for a high strain rate event. These results have significant implications for how we conceptualize the deformation of rocks with fracture networks above the percolation threshold, with application to a variety of geologic and geological engineering problems. 
    more » « less
  3. Abstract

    Percolation theory is often proposed as a framework for understanding flow and transport through fractured rock, yet the applicability of percolation theory to natural systems remains uncertain. Experimental verification of the predictions of percolation theory are challenging because of the difficulty in systematically creating 3D crack networks in crystalline materials. Using ice as a model for rock, we experimentally test the prediction of percolation theory that for a sufficiently large sample, the onset of percolation is isotropic even when the crack network is anisotropic. Consistent with theory, experimentally we find that in strongly anisotropic crack networks induced by uniaxial loading at a sufficiently high strain rate, the onset of percolation is nearly isotropic in samples where the dimension of the sample is about an order of magnitude greater than the length of the largest crack. The onset of percolation is isotropic even though nearly 90% of the induced cracks are oriented within about 10° of the direction of applied compression. A similitude analysis indicates that for typical geotherms and geologic strain rates, crack networks consistent with the predictions of percolation theory are only possible within the upper several tens of km of a nonsubducting granite slab and to depths of several hundreds of km in subducting slabs of gabbro.

     
    more » « less
  4. Abstract

    Fractured sedimentary bedrock aquifers represent complex flow systems that may contain fast, fracture‐dominated flow paths and slower, porous media‐dominated flow paths. Thus, characterizing the dynamics of flow and transport through these aquifers remains a fundamental hydrogeologic challenge. Recent studies have demonstrated the utility of a novel hydraulic testing approach, oscillatory flow testing, in field settings to characterize single bedrock fractures embedded in low‐porosity sedimentary bedrock. These studies employed an idealized analytical model assuming Darcian flow through a nondeforming, constant‐aperture, nonleaky fracture for data interpretation, and reported period‐dependent effective fracture flow parameters. Here, we present the application of oscillatory flow testing across a range of frequencies and inter‐well spacings on a fracture embedded in poorly cemented sedimentary bedrock with considerable primary porosity at the Field Site for Research in Fractured Sedimentary Rock. Consistent with previous studies, we show an apparent period‐dependence in returned flow parameters, with hydraulic diffusivity decreasing and storativity increasing with increasing oscillation period, when assuming an idealized fracture conceptual model. We present simple analyses that examine non‐Darcian flow and borehole storage effects as potential test design artifacts and a simple analytical model that examines fluid leakage to the surrounding host rock as a potential hydraulic mechanism that might contribute to the period‐dependent flow parameters. These analyses represent a range of conceptual assumptions about fracture behavior during hydraulic testing, none of which account for the measured responses during oscillatory flow testing, leading us to argue that other hydraulic processes (e.g., aperture heterogeneity and/or fracture hydromechanics) are necessary to accurately represent pressure propagation through fractured sedimentary bedrock.

     
    more » « less
  5. ABSTRACT:

    Due to rock mass being commonly subjected to compressive or shear loading, the mode II fracture toughness is an important material parameter for rocks. Fracturing in rocks is governed by the behavior of a nonlinear region surrounding the crack tip called the fracture process zone (FPZ). However, the characteristics of mode II fracture are still determined based on the linear elastic fracture mechanics (LEFM), which assumes that a pure mode II loading results in a pure mode II fracture. In this study, the FPZ development in Barre granite specimens under mode II loading was investigated using the short beam compression (SBC) test. Additionally, the influence of lateral confinement on various characteristics of mode II fracture was studied. The experimental setup included the simultaneous monitoring of surface deformation using the two-dimensional digital image correlation technique (2D-DIC) to identify fracture mode and characterize the FPZ evolution in Barre granite specimens. The 2D-DIC analysis showed a dominant mixed-mode I/II fracture in the ligament between two notches, irrespective of confinement level on the SBC specimens. The influence of confinement on the SBC specimens was assessed by analyzing the evolution of crack displacement and changes in value of mode II fracture toughness. Larger levels of damage in confined specimens were observed prior to the failure than the unconfined specimens, indicating an increase in the fracture resistance and therefore mode II fracture toughness with the confining stress.

    1. INTRODUCTION

    The fracturing in laboratory-scale rock specimens is often characterized by the deformation of the inelastic region surrounding the crack tips, also known as the fracture process zone (FPZ) (Backers et al., 2005; Ghamgosar and Erarslan, 2016). While the influence of the FPZ on mode I fracture in rocks has been extensively investigated, there are limited studies on FPZ development in rocks under pure mode II loading (Ji et al., 2016; Lin et al., 2020; Garg et al., 2021; Li et al., 2021).

     
    more » « less