The nature of subsidence in the Western Interior evolved in the Late Cretaceous from a contiguous (Sevier) foreland to partitioned (Laramide) basins coeval with an increase in long-wavelength “dynamic” subsidence. This evolution is interpreted by many as indicators of flat slab subduction. However, the timing and geographic location of changing subsidence mechanisms remains poorly documented. To better assess the geodynamic mechanisms responsible for this transition, we have mapped active elements versus time, including classic foredeeps, intra-basinal uplifts, long-wavelength subsidence, and local flexural wedges adjacent to rising Laramide structures. Criteria include isopachs, paleogeography, geohistory analysis, unconformities/exhumation, and sediment dispersal patterns. The analysis identifies a continuous foredeep along the Sevier Thrust Front through the Santonian, but not subsequently. Long-wavelength “dynamic” subsidence in the basin commences in the Coniacian, but is spatially and temporally quite variable. Short-wavelength Laramide structures first begin growing in the Ceno-Turonian. The influence of Laramide uplifts increases over time, with associated flexures becoming a dominant subsidence mechanism by the Maastrichtian. Thirteen flexural stratigraphic wedges, associated with both Sevier and Laramide uplifts, have been used to quantitatively model loads (uplift height/width) and effective elastic thicknesses (EET). EET is a measure of the integrated strength of the lithosphere. Results indicate that EET decreases over time, enhancing Laramide basin partitioning. The decrease in effective elastic thickness of the lithosphere is consistent with lithospheric weakening by the introduction of volatiles during flat slab subduction. Calculated Maastrichtian EET’s are consistent with modern EET, supporting the hypothesis that flat slab subduction preconditioned the lithosphere for subsequent Cenozoic tectonic and magmatic events. Large-scale petroleum system play elements are correlated with the distribution of these tectonic elements and associated subsidence. Examples include the Lance reservoir at Pinedale Field, Lewis source/seal in the Washakie Basin and the Niobrara source/reservoir in the Sand Wash, eastern Piceance and Denver Basins.
more »
« less
Laramide Orogenesis Driven by Late Cretaceous Weakening of the North American Lithosphere
Abstract This paper investigates the causes of the Late Cretaceous transition from “Sevier” to “Laramide” orogenesis and the spatial and temporal evolution of effective elastic thickness (EET) of the North American lithosphere. We use a Monte Carlo flexural model applied to 34 stratigraphic profiles in the Laramide province and five profiles from the Western Canadian Basin to estimate model parameters which produce flexural profiles that match observed sedimentary thicknesses. Sediment thicknesses come from basins from New Mexico to Canada of Cenomanian–Eocene age that are related to both Sevier and Laramide crustal loads. Flexural models reveal an east‐to‐west spatial decrease in EET in all time intervals analyzed. This spatial decrease in EET may have been associated with either bending stresses associated with the Sevier thrust belt, or increased proximity to attenuated continental crust at the paleocontinental margin. In the Laramide province (i.e., south of ~48°N) there was a coeval, regional decrease in EET between the Cenomanian–Santonian (~98–84 Ma) and the Campanian–Maastrichtian (~77–66 Ma), followed by a minor decrease between the Maastrichtian and Paleogene. However, there was no decrease in EET in the Western Canada Basin (north of ~48°N), which is consistent with a lack of Laramide‐style deformation or flat subduction. We conclude that the regional lithospheric weakening in the late Santonian–Campanian is best explained by hydration of the North American lithosphere thinned by bulldozing by a shallowly subducting Farallon plate. The weakening of the lithosphere facilitated Laramide contractional deformation by focusing end‐loading stresses associated with flat subduction. Laramide deformation in turn may have further reduced EET by weakening the upper crust. Finally, estimates of Campanian–Maastrichtian and Paleogene EET are comparable to current estimates indicating that the modern distribution of lithospheric strength was achieved by the Campanian in response to flat subduction.
more »
« less
- PAR ID:
- 10364079
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Journal of Geophysical Research: Solid Earth
- Volume:
- 125
- Issue:
- 8
- ISSN:
- 2169-9313
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The nature of subsidence in the Western Interior evolved in the Late Cretaceous from a contiguous (Sevier) foreland to partitioned (Laramide) basins coeval with an increase in long-wavelength “dynamic” subsidence. This evolution is interpreted by many as indicators of flat slab subduction. However, the timing and geographic location of changing subsidence mechanisms remains poorly documented. To better assess the geodynamic mechanisms responsible for this transition, we have mapped active elements versus time, including classic foredeeps, intra-basinal uplifts, long-wavelength subsidence, and local flexural wedges adjacent to rising Laramide structures. Criteria include isopachs, paleogeography, geohistory analysis, unconformities/exhumation, and sediment dispersal patterns. The analysis identifies a continuous foredeep along the Sevier Thrust Front through the Santonian, but not subsequently. Long-wavelength “dynamic” subsidence in the basin commences in the Coniacian, but is spatially and temporally quite variable. Short-wavelength Laramide structures first begin growing in the Ceno-Turonian. The influence of Laramide uplifts increases over time, with associated flexures becoming a dominant subsidence mechanism by the Maastrichtian. Thirteen flexural stratigraphic wedges, associated with both Sevier and Laramide uplifts, have been used to quantitatively model loads (uplift height/width) and effective elastic thicknesses (EET). EET is a measure of the integrated strength of the lithosphere. Results indicate that EET decreases over time, enhancing Laramide basin partitioning. The decrease in effective elastic thickness of the lithosphere is consistent with lithospheric weakening by the introduction of volatiles during flat slab subduction. Calculated Maastrichtian EET’s are consistent with modern EET, supporting the hypothesis that flat slab subduction preconditioned the lithosphere for subsequent Cenozoic tectonic and magmatic events. Large-scale petroleum system play elements are correlated with the distribution of these tectonic elements and associated subsidence. Examples include the Lance reservoir at Pinedale Field, Lewis source/seal in the Washakie Basin and the Niobrara source/reservoir in the Sand Wash, eastern Piceance and Denver Basins.more » « less
-
Abstract Three drivers of subsidence are recognized in the Western Interior Basin: Mesozoic–early Cenozoic flexure adjacent to the thin‐skinned, eastward propagating Sevier Orogeny, Late Cretaceous–Eocene flexure associated with thick‐skinned Laramide Uplifts and Late Cretaceous dynamic subsidence. This study combines outcrop lithofacies, palaeocurrent measurements, detrital zircon geochronology, biostratigraphy, stratigraphic correlations and isopach maps of Coniacian–Maastrichtian (89–66 Ma) units to identify these subsidence mechanisms impact on basin geometry and stratigraphic architecture in the northern Utah to southwestern Wyoming segment of the North American Cordillera. Detrital zircon maximum depositional ages and biostratigraphy support that the Maastrichtian Hams Fork Conglomerate was deposited above the Moxa unconformity in the wedgetop and foredeep depozones. The Moxa unconformity underlies the progradational Ericson Formation in the distal foredeep. The Hams Fork, however, is younger than the Ericson Formation, and instead equivalent to upper Almond Formation. Therefore, the hiatus associated with the Moxa unconformity continued for several million years longer in the fold belt and proximal basin than in the distal foredeep, with Ericson Formation‐equivalent strata onlapping the Moxa unconformity towards the west. Regional thickness patterns record and constrain the timing of the transition from Sevier to Laramide‐style tectonic regimes. From 88 to 83 Ma (upper Baxter Formation) a westward‐thickening stratigraphic wedge characterized the foredeep developed by lithospheric flexure by thrust‐belt loading. Nevertheless, the presence of >500 m of subsidence >200 km from the thrust front suggests a long‐wavelength subsidence mechanism consistent with dynamic subsidence. By 83 Ma (Blair Formation) the long‐wavelength depocentre shifted away from the thrust belt, with no evidence of a Sevier foredeep. This depocentre continued migrating eastward during the early‐mid Campanian (ca. 81–77 Ma). The late Campanian–Maastrichtian (ca. 74–66 Ma) is marked by narrow sedimentary wedges adjacent to the Wind River, Granite and Uinta Mountain uplifts and attributed to flexural loading by Laramide deformation.more » « less
-
Western North America is the archetypical Cordilleran orogenic system that preserves a Mesozoic to Cenozoic record of oceanic Farallon plate subduction-related processes. After prolonged Late Jurassic through mid-Cretaceous normal-angle Farallon plate subduction that produced the western North American batholith belt and retroarc fold-thrust belt, a period of low-angle, flat-slab subduction during Late Cretaceous−Paleogene time caused upper plate deformation to migrate eastward in the form of the Laramide basement-involved uplifts, which partitioned the original regional foreland basin. Major questions persist about the mechanism and timing of flat-slab subduction, the trajectory of the flat-slab, inter-plate coupling mechanism(s), and the upper-plate deformational response to such processes. Critical for testing various flat-slab hypotheses are the timing, rate, and distribution of exhumation experienced by the Laramide uplifts as recorded by low-temperature thermochronology. In this contribution, we address the timing of regional exhumation of the Laramide uplifts by combining apatite fission-track (AFT) and (U-Th-Sm)/He (AHe) data from 29 new samples with 564 previously published AFT, AHe, and zircon (U-Th)/He ages from Laramide structures in Arizona, Utah, Wyoming, Colorado, Montana, and South Dakota, USA. We integrate our results with existing geological constraints and with new regional cross sections to reconstruct the spatial and temporal history of exhumation driven by Laramide deformation from the mid-Cretaceous to Paleogene. Our analysis suggests a two-stage exhumation of the Laramide province, with an early phase of localized exhumation occurring at ca. 100−80 Ma in Wyoming and Montana, followed by a more regional period of exhumation at ca. 70−50 Ma. Generally, the onset of enhanced exhumation occurs earlier in the northern Laramide province (ca. 90 Ma) and later in the southern Laramide province (ca. 80 Ma). Thermal history models of selected samples along regional cross sections through Utah−Arizona−New Mexico and Wyoming−South Dakota show that exhumation occurred contemporaneously with deformation, implying that Laramide basement block exhumation is coupled with regional deformation. These results have implications for testing proposed migration pathway models of Farallon flat-slab and for how upper-plate deformation is expressed in flat-slab subduction zones in general.more » « less
-
Abstract The Laramide province is characterized by foreland basin partitioning through the growth of basement arches. Although variable along the western U.S. margin, the general consensus is initiation of this structural style by the early Campanian (~80 Ma). This has been linked to flat‐slab subduction beneath western North America, but the extent and cause for a flat slab remain debated, invoking the need for better constraints on the regional variations in timing of Laramide deformation. We present new conglomerate clast composition, sandstone petrographic, and detrital zircon U‐Pb geochronologic data from the Upper Cretaceous Beaverhead Group in southwestern Montana that suggest a pre‐Campanian history of basement‐involved deformation. During the early stages of deposition (~88–83 Ma), two separate depositional systems derived sediment from the Lemhi subbasin and distal thrust sheets to the west as well as Paleozoic strata eroding off the exhuming Blacktail‐Snowcrest arch to the east. Our data provide the first conclusive evidence for the longitudinal transport of gravel via Cordilleran paleorivers connecting sediment sources in east central Idaho to depocenters in southwestern Montana and northwestern Wyoming. Furthermore, erosion of Paleozoic strata by this time requires that the Blacktail‐Snowcrest arch was exhuming prior to ~88 Ma in order to remove the Mesozoic overburden. Later (~73–66 Ma) sediment flux was entirely from the foreland‐propagating fold‐thrust belt to the west. These results suggest that Laramide‐style deformation in southwestern Montana preceded initiation elsewhere along the margin, requiring revision of existing models for Laramide tectonism.more » « less
An official website of the United States government
