skip to main content


Title: Radio spectra of narrow-line Seyfert 1 galaxies observed with Australia Telescope Compact Array and Very Large Array Sky Survey
ABSTRACT

We present radio spectral analyses for a sample of 29 radio-quiet (RQ) and three radio-loud (RL) narrow-line Seyfert 1 galaxies (NLS1s) detected with the Australia Telescope Compact Array at both 5.5 and 9.0 GHz. The sample is characterized by Lbol/LEdd > 0.15. The radio slopes in 25 of the 29 RQ NLS1s are steep (α5.5–9.0 < −0.5), as found in earlier studies of RQ high Lbol/LEdd active galactic nuclei (AGN). This steep radio emission may be related to AGN-driven outflows, which are likely more prevalent in high Lbol/LEdd AGN. In two of the three RL NLS1s, the radio slopes are flat or inverted (α5.5–9.0 > −0.5), indicating a compact optically thick source, likely a relativistic jet. Archival data at 3.0, 1.4, and 0.843 GHz are also compiled, yielding a sample of 17 NLS1s detected in three bands or more. In nine objects, the radio spectra flatten at lower frequencies, with median slopes of α5.5–9.0 = −1.21 ± 0.17, flattening to α3.0–5.5 = −0.97 ± 0.27, and to α1.4–3.0 = −0.63 ± 0.16. A parabolic fit suggests a median spectral turnover of ∼1 GHz, which implies synchrotron self-absorption in a source with a size of only a fraction of 1 pc, possibly a compact wind or a weak jet. Two objects show significant spectral steepening to α < −2 above 3 or 5 GHz, which may suggest relic emission from past ejection of radio emitting plasma, of the order of a few years to a few decades ago. Finally, two objects present a single spectral slope consistent with star-forming activity.

 
more » « less
NSF-PAR ID:
10364120
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
512
Issue:
1
ISSN:
0035-8711
Format(s):
Medium: X Size: p. 471-489
Size(s):
["p. 471-489"]
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT

    The origin of the radio emission in radio-quiet quasars (RQQ) is not established yet. We present new VLBA observations at 1.6 and 4.9 GHz of 10 RQQ (9 detected), which together with published earlier observations of 8 RQQ (5 detected), forms a representative sample of 18 RQQ drawn from the Palomar–Green sample of low z (< 0.5) AGN. The spectral slope of the integrated emission extends from very steep (α < −1.98) to strongly inverted (α = +2.18), and the slopes of 9 of the 14 objects are flat (α > −0.5). Most objects have an unresolved flat-spectrum core, which coincides with the optical Gaia position. The extended emission is generally steep-spectrum, has a low brightness temperature (< 107 K), and is displaced from the optical core (the Gaia position) by ∼ 5–100 pc. The VLBA core flux is tightly correlated with the X-ray flux, and follows a radio to X-ray luminosity relation of log LR/LX ≃ −6, for all objects with a black hole mass log MBH/M⊙ < 8.5. The flatness of the core emission implies a compact source size (≲ 0.1 pc), which likely originates from the accretion disc corona. The mas-scale extended emission is optically thin and of clumpy structure, and is likely produced by an outflow from the center. Radio observations at higher frequencies can further test the accretion disc coronal emission interpretation for the core emission in RQQ.

     
    more » « less
  2. Abstract

    Kiloparsec-scale triple active galactic nuclei (AGNs), potential precursors of gravitationally bound triple massive black holes (MBHs), are rarely seen objects and believed to play an important role in the evolution of MBHs and their host galaxies. In this work we present a multiband (3.0, 6.0, 10.0, and 15.0 GHz), high-resolution radio imaging of the triple AGN candidate, SDSS J0849+1114, using the Very Large Array. Two of the three nuclei (A and C) are detected at 3.0, 6.0, and 15 GHz for the first time, both exhibiting a steep spectrum over 3–15 GHz (with a spectral index −0.90 ± 0.05 and −1.03 ± 0.04) consistent with a synchrotron origin. Nucleus A, the strongest nucleus among the three, shows a double-sided jet, with the jet orientation changing by ∼20° between its inner 1″ and the outer 5.″5 (8.1 kpc) components, which may be explained as the MBH’s angular momentum having been altered by merger-enhanced accretion. Nucleus C also shows a two-sided jet, with the western jet inflating into a radio lobe with an extent of 1.″5 (2.2 kpc). The internal energy of the radio lobe is estimated to be 5.0 × 1055erg, for an equipartition magnetic field strength of ∼160μG. No significant radio emission is detected at all four frequencies for nucleus B, yielding an upper limit of 15, 15, 15, and 18μJy beam−1at 3.0, 6.0, 10.0, and 15.0 GHz, based on which we constrain the star formation rate in nucleus B to be ≲0.4Myr−1.

     
    more » « less
  3. ABSTRACT

    The origin of the radio emission in radio-quiet quasars (RQQs) remains unclear. Radio emission may be produced by a scaled-down version of the relativistic jets observed in radio-loud (RL) AGN, an AGN-driven wind, the accretion disc corona, AGN photon-ionization of ambient gas (free–free emission), or star formation (SF). Here, we report a pilot study, part of a radio survey (‘PG-RQS’) aiming at exploring the spectral distributions of the 71 Palomar–Green (PG) RQQs: high angular resolution observations (∼50 mas) at 45 GHz (7 mm) with the Karl G. Jansky Very Large Array of 15 sources. Sub-mJy radio cores are detected in 13 sources on a typical scale of ∼100 pc, which excludes significant contribution from galaxy-scale SF. For 9 sources the 45-GHz luminosity is above the lower frequency (∼1–10 GHz) spectral extrapolation, indicating the emergence of an additional flatter-spectrum compact component at high frequencies. The X-ray luminosity and black hole (BH) mass, correlate more tightly with the 45-GHz luminosity than the 5-GHz. The 45 GHz-based radio-loudness increases with decreasing Eddington ratio and increasing BH mass MBH. These results suggest that the 45-GHz emission from PG RQQs nuclei originates from the innermost region of the core, probably from the accretion disc corona. Increasing contributions to 45-GHz emission from a jet at higher MBH and lower Eddington ratios and from a disc wind at large Eddington ratios are still consistent with our results. Future full radio spectral coverage of the sample will help us investigating the different physical mechanisms in place in RQQ cores.

     
    more » « less
  4. ABSTRACT

    Radio continuum observations offer a new window on compact objects in globular clusters compared to typical X-ray or optical studies. As part of the MAVERIC survey, we have used the Australia Telescope Compact Array to carry out a deep (median central noise level ≈4 $\mu$Jy beam-1) radio continuum survey of 26 southern globular clusters at central frequencies of 5.5 and 9.0 GHz. This paper presents a catalogue of 1285 radio continuum sources in the fields of these 26 clusters. Considering the surface density of background sources, we find significant evidence for a population of radio sources in seven of the 26 clusters, and also identify at least 11 previously known compact objects (six pulsars and five X-ray binaries). While the overall density of radio continuum sources with 7.25-GHz flux densities ≳ 20 $\mu$Jy in typical globular clusters is relatively low, the survey has already led to the discovery of several exciting compact binaries, including a candidate ultracompact black hole X-ray binary in 47 Tuc. Many of the unclassified radio sources near the centres of the clusters are likely to be true cluster sources, and multiwavelength follow-up will be necessary to classify these objects and better understand the demographics of accreting compact binaries in globular clusters.

     
    more » « less
  5. Abstract We present a highly complete sample of broad-line (Type 1) QSOs out to z ∼ 3 selected by their mid-infrared colors, a method that is minimally affected by dust reddening. We remove host-galaxy emission from the spectra and fit for excess reddening in the residual QSOs, resulting in a Gaussian distribution of colors for unreddened (blue) QSOs, with a tail extending toward heavily reddened (red) QSOs, defined as having E ( B − V ) > 0.25. This radio-independent selection method enables us to compare red and blue QSO radio properties in both the FIRST (1.4 GHz) and VLASS (2–4 GHz) surveys. Consistent with recent results from optically selected QSOs from SDSS, we find that red QSOs have a significantly higher detection fraction and a higher fraction of compact radio morphologies at both frequencies. We employ radio stacking to investigate the median radio properties of the QSOs including those that are undetected in FIRST and VLASS, finding that red QSOs have significantly brighter radio emission and steeper radio spectral slopes compared with blue QSOs. Finally, we find that the incidence of red QSOs is strongly luminosity dependent, where red QSOs make up >40% of all QSOs at the highest luminosities. Overall, red QSOs comprise ∼40% of higher luminosity QSOs, dropping to only a few percent at lower luminosities. Furthermore, red QSOs make up a larger percentage of the radio-detected QSO population. We argue that dusty AGN-driven winds are responsible for both the obscuration as well as excess radio emission seen in red QSOs. 
    more » « less