skip to main content


Title: Contingency rules for pathogen competition and antagonism in a genetically based, plant defense hierarchy
Abstract

Plant defense against pathogens includes a range of mechanisms, including, but not limited to, genetic resistance, pathogen‐antagonizing endophytes, and pathogen competitors. The relative importance of each mechanism can be expressed in a hierarchical view of defense. Several recent studies have shown that pathogen antagonism is inconsistently expressed within the plant defense hierarchy. Our hypothesis is that the hierarchy is governed by contingency rules that determine when and where antagonists reduce plant disease severity.

Here, we investigated whether pathogen competition influences pathogen antagonism usingPopulusas a model system. In three independent field experiments, we asked whether competition for leaf mesophyll cells between aMelampsorarust pathogen and a microscopic, eriophyid mite affects rust pathogen antagonism by fungal leaf endophytes. The rust pathogen has an annual, phenological disadvantage in competition with the mite because the rust pathogen must infect its secondary host in spring before infectingPopulus. We varied mite–rust competition by utilizingPopulusgenotypes characterized by differential genetic resistance to the two organisms. We inoculated plants with endophytes and allowed mites and rust to infect plants naturally.

Two contingency rules emerged from the three field experiments: (a) Pathogen antagonism by endophytes can be preempted by host genes for resistance that suppress pathogen development, and (b) pathogen antagonism by endophytes can secondarily be preempted by competitive exclusion of the rust by the mite.

Synthesis: Our results point to aPopulusdefense hierarchy with resistance genes on top, followed by pathogen competition, and finally pathogen antagonism by endophytes. We expect these rules will help to explain the variation in pathogen antagonism that is currently attributed to context dependency.

 
more » « less
NSF-PAR ID:
10364122
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Ecology and Evolution
Volume:
9
Issue:
12
ISSN:
2045-7758
Page Range / eLocation ID:
p. 6860-6868
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Summary

    Colonization by foliar endophytic fungi can affect the expression of host plant defenses and other ecologically important traits. However, whether endophyte colonization affects the uptake or redistribution of resources within and among host plant tissues remains unstudied.

    We inoculated leaves ofTheobroma cacaowith four common colonizers that range in their effect from protective to pathogenic (Colletotrichum tropicale,Pestalotiopsissp.,Colletotrichum theobromicola, orPhytophthora palmivora). We pulsed the soil with nitrogen‐15 (15N) and then traced15N uptake and its subsequent distribution to whole plants and individual leaves.

    At a whole‐plant level,C. tropicale‐inoculated plants showed significantly greater15N uptake than endophyte‐free plants did in the same pot. Among leaves within plants, younger leaves were particularly enriched in15N, but endophyte inoculation at the individual leaf level did not alter15N distribution within plants. However, leaves co‐inoculated with pathogenicPhytophthoraand protectiveC. tropicaleexperienced significantly elevated15N content as pathogen damage increased, compared with leaves inoculated only with the pathogen. Further, endophyte–pathogen co‐infection also increased total plant biomass.

    Our results indicate that colonization by foliar endophytes significantly affects N uptake and distribution among and within host plants in ways that appear to be context dependent on other microbiome components.

     
    more » « less
  2. Summary

    Local adaptation is an important process in plant evolution, which can be impacted by differential pathogen pressures along environmental gradients. However, the degree to which pathogen resistance loci vary in effect across space and time is incompletely described.

    To understand how the genetic architecture of resistance varies across time and geographic space, we quantified rust (Pucciniaspp.) severity in switchgrass (Panicum virgatum) plantings at eight locations across the central USA for 3 yr and conducted quantitative trait locus (QTL) mapping for rust progression.

    We mapped several variable QTLs, but two large‐effect QTLs which we have namedPrr1andPrr2were consistently associated with rust severity in multiple sites and years, particularly in northern sites. By contrast, there were numerous small‐effect QTLs at southern sites, indicating a genotype‐by‐environment interaction in rust resistance loci. Interestingly,Prr1andPrr2had a strong epistatic interaction, which also varied in the strength and direction of effect across space.

    Our results suggest that abiotic factors covarying with latitude interact with the genetic loci underlying plant resistance to control rust infection severity. Furthermore, our results indicate that segregating genetic variation in epistatically interacting loci may play a key role in determining response to infection across geographic space.

     
    more » « less
  3. Summary

    NPR1 has been found to be a key transcriptional regulator in some plant defence responses. There are nineNPR1homologues (TaNPR1) in wheat, but little research has been done to understand the function of thoseNPR1‐like genes in the wheat defence response against stem rust (Puccinia graminisf. sp.tritici) pathogens.

    We used bioinformatics and reverse genetics approaches to study the expression and function of eachTaNPR1.

    We found six members ofTaNPR1located on homoeologous group 3 chromosomes (designated asTaG3NPR1) and three on homoeologous group 7 chromosomes (designated asTaG7NPR1). The group 3 NPR1 proteins regulate transcription of SA‐responsivePRgenes. Downregulation of all theTaNPR1homologues via virus‐induced gene co‐silencing resulted in enhanced resistance to stem rust. More specifically downregulatingTaG7NPR1homeologues orTa7ANPR1expression resulted in stem rust resistance phenotype. By contrast, knocking downTaG3NPR1alone did not show visible phenotypic changes in response to the rust pathogen. Knocking outTa7ANPR1enhanced resistance to stem rust. TheTa7ANPR1locus is alternatively spliced under pathogen inoculated conditions.

    We discovered a new mode of NPR1 action in wheat at theTa7ANPR1locus through an NB‐ARC–NPR1 fusion protein negatively regulating the defence to stem rust infection.

     
    more » « less
  4. Abstract

    Closely related species are expected to have similar functional traits due to shared ancestry and phylogenetic inertia. However, few tests of this hypothesis are available for plant‐associated fungal symbionts. Fungal leaf endophytes occur in all land plants and can protect their host plant from disease by a variety of mechanisms, including by parasitizing pathogens (e.g., mycoparasitism). Here, we tested whether phylogenetic relatedness among species ofCladosporium, a widespread genus that includes mycoparasitic species, predicts the effect of this endophyte on the severity of leaf rust disease. First, we used congruence among different marker sequences (i.e., genealogical concordance phylogenetic species recognition criterion) to delimit species ofCladosporium. Next, in a controlled experiment, we quantified both mycoparasitism and disease modification for the selectedCladosporiumspecies. We identified 17 species ofCladosporium; all the species reduced rust disease severity in our experiment.Cladosporiumphylogeny was a significant predictor of mycoparasitism. However, we did not observe a phylogenetic effect on disease severity overall, indicating that other mechanism/s operating independently of shared ancestry also contributed to endophyte effects on disease severity. Indeed, a second experiment showed thatCladosporiumendophyte exudates (no live organism) from divergent species groups equally reduced disease severity. Our results reveal that multiple mechanisms contribute to the protective effects of an endophyte against a plant pathogen, but not all traits underlying these mechanisms are phylogenetically conserved.

     
    more » « less
  5. Summary

    Southern leaf blight (SLB), caused by the necrotrophic fungal pathogenCochliobolus heterostrophus(anamorphBipolaris maydis), is a major foliar disease which causes significant yield losses in maize worldwide. A major quantitative trait locus,qSLB3.04, conferring recessive resistance to SLB was previously mapped on maize chromosome 3.

    Using a combination of map‐based cloning, association analysis, ethyl methanesulfonate and transposon mutagenesis, and CRISPR‐Cas9 editing, we demonstrate that a leucine‐rich repeat receptor‐like kinase gene which we have calledChSK1(Cochliobolus heterostrophus Susceptibility Kinase 1) atqSLB3.04causes increased susceptibility to SLB. Genes of this type have generally been associated with the defense response.

    We present evidence thatChSK1may be associated with suppression of the basal immune response.

    These findings contribute to our understanding of plant disease susceptibility genes and the potential to use them for engineering durable disease resistance.

     
    more » « less