skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Multidimensional molecular measurements–environment interaction analysis for disease outcomes
Abstract Multiple types of molecular (genetic, genomic, epigenetic, etc.) measurements, environmental risk factors, and their interactions have been found to contribute to the outcomes and phenotypes of complex diseases. In each of the previous studies, only the interactions between one type of molecular measurement and environmental risk factors have been analyzed. In recent biomedical studies, multidimensional profiling, in which data from multiple types of molecular measurements are collected from the same subjects, is becoming popular. A myriad of recent studies have shown that collectively analyzing multiple types of molecular measurements is not only biologically sensible but also leads to improved estimation and prediction. In this study, we conduct an M–E interaction analysis, with M standing for multidimensional molecular measurements and E standing for environmental risk factors. This can accommodate multiple types of molecular measurements and sufficiently account for their overlapping as well as independent information. Extensive simulation shows that it outperforms several closely related alternatives. In the analysis of TCGA (The Cancer Genome Atlas) data on lung adenocarcinoma and cutaneous melanoma, we make some stable biological findings and achieve stable prediction.  more » « less
Award ID(s):
1916251
PAR ID:
10364152
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Biometrics
Volume:
78
Issue:
4
ISSN:
0006-341X
Format(s):
Medium: X Size: p. 1542-1554
Size(s):
p. 1542-1554
Sponsoring Org:
National Science Foundation
More Like this
  1. Beyond the main genetic and environmental effects, gene–environment (G–E) interactions have been demonstrated to significantly contribute to the development and progression of complex diseases. Published analyses of G–E interactions have primarily used a supervised framework to model both low-dimensional environmental factors and high-dimensional genetic factors in relation to disease outcomes. In this article, we aim to provide a selective review of methodological developments in G–E interaction analysis from a statistical perspective. The three main families of techniques are hypothesis testing, variable selection, and dimension reduction, which lead to three general frameworks: testing-based, estimation-based, and prediction-based. Linear- and nonlinear-effects analysis, fixed- and random-effects analysis, marginal and joint analysis, and Bayesian and frequentist analysis are reviewed to facilitate the conduct of interaction analysis in a wide range of situations with various assumptions and objectives. Statistical properties, computations, applications, and future directions are also discussed. 
    more » « less
  2. The heightened dipolar interactions in solids render solid-state NMR (ssNMR) spectra more difficult to interpret than solution NMR spectra. On the other hand, ssNMR does not suffer from severe molecular weight limitations like solution NMR. In recent years, ssNMR has undergone rapid technological developments that have enabled structure–function studies of increasingly larger biomolecules, including membrane proteins. Current methodology includes stable isotope labeling schemes, non-uniform sampling with spectral reconstruction, faster magic angle spinning, and innovative pulse sequences that capture different types of interactions among spins. However, computational tools for the analysis of complex ssNMR data from membrane proteins and other challenging protein systems have lagged behind those for solution NMR. Before a structure can be determined, thousands of signals from individual types of multidimensional ssNMR spectra of samples, which may have differing isotopic composition, must be recognized, correlated, categorized, and eventually assigned to atoms in the chemical structure. To address these tedious steps, we have developed an automated algorithm for ssNMR spectra called “ssPINE”. The ssPINE software accepts the sequence of the protein plus peak lists from a variety of ssNMR experiments as inputs and offers automated backbone and side-chain assignments. The alpha version of ssPINE, which we describe here, is freely available through a web submission form. 
    more » « less
  3. Abstract Genotype-by-environment (G×E) interactions can significantly affect crop performance and stability. Investigating G×E requires extensive data sets with diverse cultivars tested over multiple locations and years. The Genomes-to-Fields (G2F) Initiative has tested maize hybrids in more than 130 year-locations in North America since 2014. Here, we curate and expand this data set by generating environmental covariates (using a crop model) for each of the trials. The resulting data set includes DNA genotypes and environmental data linked to more than 70,000 phenotypic records of grain yield and flowering traits for more than 4000 hybrids. We show how this valuable data set can serve as a benchmark in agricultural modeling and prediction, paving the way for countless G×E investigations in maize. We use multivariate analyses to characterize the data set’s genetic and environmental structure, study the association of key environmental factors with traits, and provide benchmarks using genomic prediction models. 
    more » « less
  4. Human complex diseases are affected by both genetic and environmental factors. When multiple environmental risk factors are present, the interaction effect between a gene and the environmental mixture can be larger than the addition of individual interactions, resulting in the so-called synergistic gene–environment (GxE) interactions. Existing literature has shown the power of synergistic gene-environment interaction analysis with cross-sectional traits. In this work, we propose a functional varying index coefficient model for longitudinal traits together with multiple longitudinal environmental risk factors and assess how the genetic effects on a longitudinal disease trait are nonlinearly modified by a mixture of environmental influences. We derive an estimation procedure for the nonparametric functional varying index coefficients under the quadratic inference function and penalized spline framework. We evaluate some theoretical properties such as estimation consistency and asymptotic normality of the estimates. We further propose a hypothesis testing procedure to assess the significance of the synergistic GxE effect. The performance of the estimation and testing procedure is evaluated through Monte Carlo simulation studies. Finally, the utility of the method is illustrated by a real dataset from a pain sensitivity study in which SNP effects are nonlinearly modulated by a mixture of drug dosages and other environmental variables to affect patients’ blood pressure and heart rate. 
    more » « less
  5. Abstract Conservation of migratory species exhibiting wide‐ranging and multidimensional behaviors is challenged by management efforts that only utilize horizontal movements or produce static spatial–temporal products. For the deep‐diving, critically endangered eastern Pacific leatherback turtle, tools that predict where turtles have high risks of fisheries interactions are urgently needed to prevent further population decline. We incorporated horizontal–vertical movement model results with spatial–temporal kernel density estimates and threat data (gear‐specific fishing) to develop monthly maps of spatial risk. Specifically, we applied multistate hidden Markov models to a biotelemetry data set (n = 28 leatherback tracks, 2004–2007). Tracks with dive information were used to characterize turtle behavior as belonging to 1 of 3 states (transiting, residential with mixed diving, and residential with deep diving). Recent fishing effort data from Global Fishing Watch were integrated with predicted behaviors and monthly space‐use estimates to create maps of relative risk of turtle–fisheries interactions. Drifting (pelagic) longline fishing gear had the highest average monthly fishing effort in the study region, and risk indices showed this gear to also have the greatest potential for high‐risk interactions with turtles in a residential, deep‐diving behavioral state. Monthly relative risk surfaces for all gears and behaviors were added to South Pacific TurtleWatch (SPTW) (https://www.upwell.org/sptw), a dynamic management tool for this leatherback population. These modifications will refine SPTW's capability to provide important predictions of potential high‐risk bycatch areas for turtles undertaking specific behaviors. Our results demonstrate how multidimensional movement data, spatial–temporal density estimates, and threat data can be used to create a unique conservation tool. These methods serve as a framework for incorporating behavior into similar tools for other aquatic, aerial, and terrestrial taxa with multidimensional movement behaviors. 
    more » « less