skip to main content


Title: Ecosystem engineering alters density‐dependent feedbacks in an aquatic insect population
Abstract

Ecosystem engineers have large impacts on the communities in which they live, and these impacts may feed back to populations of engineers themselves. In this study, we assessed the effect of ecosystem engineering on density‐dependent feedbacks for midges in Lake Mývatn, Iceland. The midge larvae reside in the sediment and build silk tubes that provide a substrate for algal growth, thereby elevating benthic primary production. Benthic algae are in turn the primary food source for the midge larvae, setting the stage for the effects of engineering to feed back to the midges themselves. Using a field mesocosm experiment manipulating larval midge densities, we found a generally positive but nonlinear relationship between density and benthic production. Furthermore, adult emergence increased with the primary production per midge larva. By combining these two relationships in a simple model, we found that the positive effect of midges on benthic production weakened negative density dependence at low to intermediate larval densities. However, this benefit disappeared at high densities when midge consumption of primary producers exceeded their positive effects on primary production through ecosystem engineering. Our results illustrate how ecosystem engineering can alter density‐dependent feedbacks for engineer populations.

 
more » « less
NSF-PAR ID:
10364156
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Ecology
Volume:
102
Issue:
11
ISSN:
0012-9658
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Population cycles can be caused by consumer–resource interactions. Confirming the role of consumer–resource interactions, however, can be challenging due to an absence of data for the resource candidate. For example, interactions between midge larvae and benthic algae likely govern the high‐amplitude population fluctuations ofTanytarsus gracilentusin Lake Mývatn, Iceland, but there are no records of benthic resources concurrent with adult midge population counts. Here, we investigate consumer population dynamics using the carbon stable isotope signatures of archivedT. gracilentusspecimens collected from 1977 to 2015, under the assumption that midge δ13C values reflect those of resources they consumed as larvae. We used the time series for population abundance and δ13C to estimate interactions between midges and resources while accounting for measurement error and possible preservation effects on isotope values. Results were consistent with consumer–resource interactions: high δ13C values preceded peaks in the midge population, and δ13C values tended to decline after midges reached high abundance. One interpretation of this dynamic coupling is that midge isotope signatures reflect temporal variation in benthic algal δ13C values, which we expected to mirror primary production. Following from this explanation, high benthic production (enriched δ13C values) would contribute to increased midge abundance, and high midge abundance would result in declining benthic production (depleted δ13C values). An additional and related explanation is that midges deplete benthic algal abundance once they reach peak densities, causing midges to increase their relative reliance on other resources including detritus and associated microorganisms. Such a shift in resource use would be consistent with the subsequent decline in midge δ13C values. Our study adds evidence that midge–resource interactions driveT. gracilentusfluctuations and demonstrates a novel application of stable isotope time‐series data to understand consumer population dynamics.

     
    more » « less
  2. 1. Intraspecific competition for food may affect the development, survival, and fecundity of organisms. However, environmental variation in abiotic conditions can influence resource quality and/or quantity, thereby modifying the strength of intraspecific competition.

    2. This study focuses on intraspecific competition amongTanytarsus gracilentus(Chironomidae: Diptera) larvae. In Lake Mývatn, Iceland,T. gracilentusundergoes large population fluctuations, and evidence suggests that these fluctuations are governed by consumer‐resource interactions between the larvae and benthic diatoms. In two experiments, we studied (i) the effects of larval density on individual development and survival, and (ii) how light and nutrients (nitrogen and phosphorus) mediate the strength of intraspecific competition across a density gradient.

    3. Survival declined with increasing larval density in both experiments, although not significantly in the first experiment in which we manipulated only density. In the second experiment, enhancement of either light or phosphorus mitigated the negative effect of larval density on survival. In both experiments, density had a negative effect on individual development. In the first experiment, fewer larvae progressed to the final fourth instar at higher densities. In the second experiment, larvae were smaller in high density treatments, and this effect was most pronounced in the treatments without light or phosphorus supplementation.

    4. These results highlight the potential for environmental factors to influence the strength of density‐dependent competition. Environmental variation that affects resource quantity or quality may influence the overall dynamics of our study organism and other populations whose dynamics are controlled by consumer‐resource relationships.

     
    more » « less
  3. Many consumers depend on the contemporaneous growth of their food resources. For example,Tanytarsus gracilentusmidges feed on algae, and because midge generation time is much longer than that of algae, individual midges benefit not just from the standing stock but also from the growth of algae during their lifespans. This implies that an intermediate consumption rate maximizes midge somatic growth: low consumption rates constrain midge growth because they do not fully utilize the available food, whereas high consumption rates suppress algal biomass growth and consequently limit future food availability. An experiment manipulating midge presence and initial algal abundance showed that midges can suppress algal growth, as measured by changes in algal gross primary production (GPP). We also found a positive relationship between GPP and midge growth. A consumer–resource model fit to the experimental data showed a hump‐shaped relationship between midge consumption rates and their somatic growth. In the model, predicted midge somatic growth rates were only positively associated with GPP when their consumption rate was below the value that optimized midge growth. Therefore, midges did not overexploit algae in the experiment. This work highlights the balance that consumers which depend on contemporaneous resource growth might have to strike between short‐term growth and future food availability, and the benefits for consumers when they ‘manage' their resources well.

     
    more » « less
  4. Abstract

    Ecosystem engineers transform habitats in ways that facilitate a diversity of species; however, few investigations have isolated short‐term effects of engineers from the longer‐term legacy effects of their engineered structures. We investigated how initial presence of net‐spinning caddisflies (Hydropsychidae) and their structures that provide and modify habitat differentially influence benthic community colonization in a headwater stream by conducting an in situ experiment that included three treatments: (1) initial engineering organism with its habitat modification structure occupied (hereafter caddisfly); (2) initial habitat modification structure alone (hereafter silk); and (3) a control with the initial absence of both engineer and habitat modification structure (hereafter control). Total invertebrate colonization density and biomass was higher in caddisfly and silk treatments compared to controls (~25% and 35%, respectively). However, finer‐scale patterns of taxonomy revealed that density for one of the taxa, Chironomidae, was ~19% higher in caddisfly compared to silk treatments. Additionally, conspecific biomass was higher by an average of 50% in silk treatments compared to controls; however, no differences inHydropsychesp. biomass were detected between caddisfly treatments and controls, indicating initially abandoned silk structures elevated conspecific biomass. These findings suggest that the positive effects of the habitat modification structures that were occupied for the entirety of the experiment may outweigh any potential negative impacts from the engineer, which is known to be territorial. Importantly, these results reveal that the initial presence of the engineer itself may be important in maintaining the ecological significance of habitat modifications. Furthermore, the habitat modifications that were initially abandoned (silk) had similar positive effects on conspecific biomass compared to caddisfly treatments, suggesting legacy effects of these engineering structures may have pertinent intraspecific feedbacks of the same magnitude to that of occupied habitat modifications. Elucidating how engineers and their habitat modifications differentially facilitate organisms will allow for a clearer mechanistic understanding of the extent to which animal engineers and their actions influence aspects of community organization such as colonization.

     
    more » « less
  5. Abstract

    Numerous mutualisms have been described from terrestrial and marine communities and many of these mutualisms have significant effects on community structure and function. In contrast, there are far fewer examples of mutualisms from freshwater habitats and there is no evidence that any mutualism has community‐wide or ecosystem‐level consequences. Northern hemisphere crayfish are host to a variety of ectosymbiotic worms called branchiobdellidans. The association between some of these “crayfish worms” and their hosts is a mutualism. The outcome of the association is context dependent and can be influenced by host size, symbiont number, and the environment. Here we document in two experiments that the mutualism between crayfish and these worms alters the effect of crayfish on stream community structure and sediment deposition, an important ecosystem variable. We enclosed crayfish stocked with 0 worms and intermediate (3–6) and high worm densities (12) in cages in streams in Boone, North Carolina and Clemson, South Carolina, United States. At both locations, there was a negative relationship between initial worm density and final macroinvertebrate abundance. There was a significant effect of worm treatment on macroinvertebrate community structure in both the Boone and Clemson experiments. In Boone, there were effects on both overall macroinvertebrate abundance and community composition, whereas in Clemson, changes to community structure were primarily driven by changes in total abundance. There was a negative relationship between benthic sediment volume and initial worm density in both experiments, primarily later in the experiments, though these effects were influenced by sediment deposition rates. Our results are the first to demonstrate strong effects of a mutualism on freshwater communities. Both members of this mutualism are found throughout the northern hemisphere, so similar impacts may occur in many other waterways. Given that various species in addition to crayfish function as keystone species and ecosystem engineers in freshwater systems throughout the world, mutualisms involving these strongly interacting species may be as important to the structure and functioning of freshwater systems as comparable mutualisms in marine and terrestrial systems.

     
    more » « less