skip to main content


Title: An experimental test of disease resistance function in the skin-associated bacterial communities of three tropical amphibian species
Abstract

Variation in the structure of host-associated microbial communities has been correlated with the occurrence and severity of disease in diverse host taxa, suggesting a key role of the microbiome in pathogen defense. However, whether these correlations are typically a cause or consequence of pathogen exposure remains an open question, and requires experimental approaches to disentangle. In amphibians, infection by the fungal pathogen Batrachochytrium dendrobatidis (Bd) alters the skin microbial community in some host species, whereas in other species, the skin microbial community appears to mediate infection dynamics. In this study, we completed experimental Bd exposures in three species of tropical frogs (Agalychnis callidryas, Dendropsophus ebraccatus,andCraugastor fitzingeri) that were sympatric with Bd at the time of the study. For all three species, we identified key taxa within the skin bacterial communities that were linked to Bd infection dynamics. We also measured higher Bd infection intensities in D. ebraccatus and C. fitzingeri that were associated with higher mortality in C. fitzingeri. Our findings indicate that microbially mediated pathogen resistance is a complex trait that can vary within and across host species, and suggest that symbiont communities that have experienced prior selection for defensive microbes may be less likely to be disturbed by pathogen exposure.

 
more » « less
NSF-PAR ID:
10364158
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
FEMS Microbiology Ecology
Volume:
98
Issue:
3
ISSN:
1574-6941
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Infectious pathogens can disrupt the microbiome in addition to directly affecting the host. Impacts of disease may be dependent on the ability of the microbiome to recover from such disturbance, yet remarkably little is known about microbiome recovery after disease, particularly in nonhuman animals. We assessed the resilience of the amphibian skin microbial community after disturbance by the pathogen, Batrachochytrium dendrobatidis (Bd). Skin microbial communities of laboratory-reared mountain yellow-legged frogs were tracked through three experimental phases: prior to Bd infection, after Bd infection (disturbance), and after clearing Bd infection (recovery period). Bd infection disturbed microbiome composition and altered the relative abundances of several dominant bacterial taxa. After Bd infection, frogs were treated with an antifungal drug that cleared Bd infection, but this did not lead to recovery of microbiome composition (measured as Unifrac distance) or relative abundances of dominant bacterial groups. These results indicate that Bd infection can lead to an alternate stable state in the microbiome of sensitive amphibians, or that microbiome recovery is extremely slow—in either case resilience is low. Furthermore, antifungal treatment and clearance of Bd infection had the additional effect of reducing microbial community variability, which we hypothesize results from similarity across frogs in the taxa that colonize community vacancies resulting from the removal of Bd. Our results indicate that the skin microbiota of mountain yellow-legged frogs has low resilience following Bd-induced disturbance and is further altered by the process of clearing Bd infection, which may have implications for the conservation of this endangered amphibian.

     
    more » « less
  2. Reguera, Gemma (Ed.)
    ABSTRACT Mucosal defenses are crucial in animals for protection against pathogens and predators. Host defense peptides (antimicrobial peptides, AMPs) as well as skin-associated microbes are key components of mucosal immunity, particularly in amphibians. We integrate microbiology, molecular biology, network-thinking, and proteomics to understand how host and microbially derived products on amphibian skin (referred to as the mucosome) serve as pathogen defenses. We studied defense mechanisms against chytrid pathogens, Batrachochytrium dendrobatidis (Bd) and B. salamandrivorans (Bsal), in four salamander species with different Batrachochytrium susceptibilities. Bd infection was quantified using qPCR, mucosome function (i.e., ability to kill Bd or Bsal zoospores in vitro ), skin bacterial communities using 16S rRNA gene amplicon sequencing, and the role of Bd-inhibitory bacteria in microbial networks across all species. We explored the presence of candidate-AMPs in eastern newts and red-backed salamanders. Eastern newts had the highest Bd prevalence and mucosome function, while red-back salamanders had the lowest Bd prevalence and mucosome function, and two-lined salamanders and seal salamanders were intermediates. Salamanders with highest Bd infection intensity showed greater mucosome function. Bd infection prevalence significantly decreased as putative Bd-inhibitory bacterial richness and relative abundance increased on hosts. In co-occurrence networks, some putative Bd-inhibitory bacteria were found as hub-taxa, with red-backs having the highest proportion of protective hubs and positive associations related to putative Bd-inhibitory hub bacteria. We found more AMP candidates on salamanders with lower Bd susceptibility. These findings suggest that salamanders possess distinct innate mechanisms that affect chytrid fungi. IMPORTANCE How host mucosal defenses interact, and influence disease outcome is critical in understanding host defenses against pathogens. A more detailed understanding is needed of the interactions between the host and the functioning of its mucosal defenses in pathogen defense. This study investigates the variability of chytrid susceptibility in salamanders and the innate defenses each species possesses to mediate pathogens, thus advancing the knowledge toward a deeper understanding of the microbial ecology of skin-associated bacteria and contributing to the development of bioaugmentation strategies to mediate pathogen infection and disease. This study improves the understanding of complex immune defense mechanisms in salamanders and highlights the potential role of the mucosome to reduce the probability of Bd disease development and that putative protective bacteria may reduce likelihood of Bd infecting skin. 
    more » « less
  3. Abstract

    Life processes of ectothermic vertebrates are intimately linked to the temperature of their environment, influencing their metabolism, reproduction, behaviour and immune responses. In amphibians infected by the generalist chytrid pathogenBatrachochytrium dendrobatidis(Bd), host survival, infection prevalence and infection intensity are often temperature‐ and/or seasonally dependent. However, the transcriptional underpinnings of thermal differences in infection responses remain unknown. Measuring the impact of temperature on host responses to infection is a key component for understanding climatic influences on chytrid disease dynamics. TheBd‐responsive gene pathways in frogs are well documented, but our understanding of salamander immune expression profiles during infection with chytrids remains limited. Here we characterize the transcriptomic responses ofPlethodon cinereususing RNA sequencing by comparing skin and splenic gene expression of individuals uninfected, succumbing toBdinfection and naturally cleared ofBdinfection at three temperatures. We suggest that amphibian temperature‐dependent susceptibility toBdis probably driven by shifts in expression of the innate and adaptive immune axes. Our study shows increased expression of transcripts associated with inflammation at lower temperatures and a shift towards increased expression of adaptive immune genes, including MHC (major histocompatibility complex), at higher temperatures. In the face of climate change, and as concerns for the spread of emergent chytrid pathogens increase, our results provide important functional genomic resources to help understand how these pathogenic fungi may continue to affect amphibian communities globally in the future.

     
    more » « less
  4. Host-associated microbiomes play important roles in host health and pathogen defense. In amphibians, the skin-associated microbiota can contribute to innate immunity with potential implications for disease management. Few studies have examined season-long temporal variation in the amphibian skin-associated microbiome, and the interactions between bacteria and fungi on amphibian skin remain poorly understood. We characterize season-long temporal variation in the skin-associated microbiome of the western tiger salamander ( Ambystoma mavortium ) for both bacteria and fungi between sites and across salamander life stages. Two hundred seven skin-associated microbiome samples were collected from salamanders at two Rocky Mountain lakes throughout the summer and fall of 2018, and 127 additional microbiome samples were collected from lake water and lake substrate. We used 16S rRNA and ITS amplicon sequencing with Bayesian Dirichlet-multinomial regression to estimate the relative abundances of bacterial and fungal taxa, test for differential abundance, examine microbial selection, and derive alpha diversity. We predicted the ability of bacterial communities to inhibit the amphibian chytrid fungus Batrachochytrium dendrobatidis ( Bd ), a cutaneous fungal pathogen, using stochastic character mapping and a database of Bd -inhibitory bacterial isolates. For both bacteria and fungi, we observed variation in community composition through time, between sites, and with salamander age and life stage. We further found that temporal trends in community composition were specific to each combination of salamander age, life stage, and lake. We found salamander skin to be selective for microbes, with many taxa disproportionately represented relative to the environment. Salamander skin appeared to select for predicted Bd -inhibitory bacteria, and we found a negative relationship between the relative abundances of predicted Bd -inhibitory bacteria and Bd . We hope these findings will assist in the conservation of amphibian species threatened by chytridiomycosis and other emerging diseases. 
    more » « less
  5. Abstract

    Chytridiomycosis, caused by the pathogen Batrachochytrium dendrobatidis (Bd), has led to population declines and extinctions of frog species around the world. While it is known that symbiotic skin bacteria can play a protective role against pathogens, it is not known how these defensive bacteria are integrated into the bacterial community on amphibian skin. In this study, we used 16S rRNA gene amplicon sequencing, culturing and Bd inhibition bioassays to characterize the communities of skin bacteria on three Neotropical frog species that persist in a Bd-infected area in Panama and determined the abundance and integration of anti-Bd bacteria into the community. We found that the two treefrog species had a similar bacterial community structure, which differed from the more diverse community found on the terrestrial frog. Co-occurrence networks also revealed differences between frog species such that the treefrogs had a significantly higher number of culturable Bd-inhibitory OTUs with high centrality scores compared with the terrestrial frog. We found that culture-dependent OTUs captured between 21 and 39% of the total relative abundance revealed in culture-independent communities. Our results suggest different ecological strategies occurring within skin antifungal communities on host species that have not succumbed to Bd infections in the wild.

     
    more » « less