Josephson proximity junctions and devices employing topological insulators are promising candidates for realizing topological superconductivity and topologically protected quantum circuits. Here, the new type of oscillations of the critical Josephson current in the ballistic Nb‐Bi2Te2.3Se0.7‐Nb junctions subject to the magnetic fields is reported. The oscillations appear below ≈400 mK and have a very unusual sharp‐peaked shape. Their ultra‐short period ≈1 Oe, by orders of magnitude shorter than the expected periodicity due to fluxoid quantization in the device, corresponds to the extremely low energy scale ≈1 eV. It is established that the observed effect is due to the resonant transmission of Andreev quasiparticles via the peculiar energy levels forming near the S‐TI interfaces.
Bi2Se3is a prototypical topological insulator, which has a small bandgap (∼0.3 eV) and topologically protected conducting surface states. This material exhibits quite strong thermoelectric effects. Here, we show in a mechanically exfoliated thick (∼100 nm) nanoflake device that we can measure the energy dependent optical absorption through the photothermoelectric effect. Spectral signatures are seen for a number of optical transitions between the valence and conduction bands, including a broad peak at 1.5 eV, which is likely dominated by bulk band-to-band optical transitions but is at the same energy as the well-known optical transition between the two topologically protected conducting surface states. We also observe a surprising linear polarization dependence in the response of the device that reflects the influence of the metal contacts.
more » « less- NSF-PAR ID:
- 10364160
- Publisher / Repository:
- American Institute of Physics
- Date Published:
- Journal Name:
- Applied Physics Letters
- Volume:
- 120
- Issue:
- 12
- ISSN:
- 0003-6951
- Page Range / eLocation ID:
- Article No. 122110
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract Engineering electronic bandgaps is crucial for applications in information technology, sensing, and renewable energy. Transition metal dichalcogenides (TMDCs) offer a versatile platform for bandgap modulation through alloying, doping, and heterostructure formation. Here, the synthesis of a 2D MoxW1‐xS2graded alloy is reported, featuring a Mo‐rich center that transitions to W‐rich edges, achieving a tunable bandgap of 1.85 to 1.95 eV when moving from the center to the edge of the flake. Aberration‐corrected high‐angle annular dark‐field scanning transmission electron microscopy showed the presence of sulfur monovacancy, VS, whose concentration varied across the graded MoxW1‐xS2layer as a function of Mo content with the highest value in the Mo‐rich center region. Optical spectroscopy measurements supported by ab initio calculations reveal a doublet electronic state of VS, which is split due to the spin‐orbit interaction, with energy levels close to the conduction band or deep in the bandgap depending on whether the vacancy is surrounded by W atoms or Mo atoms. This unique electronic configuration of VSin the alloy gave rise to four spin‐allowed optical transitions between the VSlevels and the valence bands. The study demonstrates the potential of defect and optical engineering in 2D monolayers for advanced device applications.
-
The dissociation of the CNHicomplex in GaN is studied in detail using photoluminescence measurements and first‐principles calculations. The blue luminescence (BL2) band with a maximum at 3.0 eV is caused by electron transitions from an excited state located at 0.02 eV below the conduction band to the ground state of the CNHidonor with the 0/+ level 0.15 eV above the valence band. The dissociation releases hydrogen atom, and the remaining CNdefect with the −/0 state at 0.92 eV above the valence band is responsible for the yellow band (YL1) with a maximum at about 2.2 eV. The dissociation of the CNHicomplex can be caused by the photoinduced defect reaction mechanism under UV illumination at low temperature (≈20 K), leading to the bleaching of the BL2 band and simultaneous rise in the YL1 band. The bleaching is reversible. Alternatively, the complex dissociates after annealing at temperatures above 600 °C. The activation energy of this process (3–4 eV, depending on the annealing geometry) corresponds to the removal of hydrogen from the sample and not to the dissociation of the complex itself.
-
Abstract Previous band structure calculations predicted Ag3AuSe2to be a semiconductor with a band gap of approximately 1 eV. Here, we report single crystal growth of Ag3AuSe2and its transport and optical properties. Single crystals of Ag3AuSe2were synthesized by slow‐cooling from the melt, and grain sizes were confirmed to be greater than 2 mm using electron backscatter diffraction. Optical and transport measurements reveal that Ag3AuSe2is a highly resistive semiconductor with a band gap and activation energy around 0.3 eV. Our first‐principles calculations show that the experimentally determined band gap lies between the predicted band gaps from GGA and hybrid functionals. We predict band inversion to be possible by applying tensile strain. The sensitivity of the gap to Ag/Au ordering, chemical substitution, and heat treatment merit further investigation.
-
Abstract Here, the observation of spin‐polarized emission for the Au25(SC8H9)18monolayer‐protected cluster (MPC) is reported. Variable‐temperature variable‐field magnetic circular photoluminescence (VTV‐MCPL) measurements are combined with VT‐PL spectroscopy to provide state‐resolved characterization of the transient electronic structure and spin‐polarized electron‐hole recombination dynamics of Au25(SC8H9)18. Through analysis of VTV‐MCPL measurements, a low energy (1.64 eV) emission peak is assigned to intraband relaxation between core‐metal‐localized superatom‐D to ‐P orbitals. Two higher energy interband components (1.78 eV, 1.94 eV) are assigned to relaxation from superatom‐D orbitals to states localized to the inorganic semirings. For both intraband superatom‐based or interband relaxation mechanisms, the extent of spin‐polarization, quantified as the degree of circular polarization (DOCP), is determined by state‐specific electron‐vibration coupling strengths and energy separations of bright and dark electronic fine‐structure levels. At low temperatures (<60 K), metal–metal superatom‐based intraband transitions dominate the global PL emission. At higher temperatures (>60 K), interband ligand‐based emission is dominant. In the low‐temperature PL regime, increased sample temperature results in larger global PL intensity. In the high‐temperature regime, increased temperature quenches interband radiative recombination. The relative intensity for each PL mechanism is discussed in terms of state‐specific electronic‐vibrational coupling strengths and related to the total angular momentum, quantified by Landé
g ‐factors.