High crystalline quality thick β-Ga2O3drift layers are essential for multi-kV vertical power devices. Low-pressure chemical vapor deposition (LPCVD) is suitable for achieving high growth rates. This paper presents a systematic study of the Schottky barrier diodes fabricated on four different Si-doped homoepitaxial β-Ga2O3thin films grown on Sn-doped (010) and (001) β-Ga2O3substrates by LPCVD with a fast growth rate varying from 13 to 21 μm/h. A higher temperature growth results in the highest reported growth rate to date. Room temperature current density–voltage data for different Schottky diodes are presented, and diode characteristics, such as ideality factor, barrier height, specific on-resistance, and breakdown voltage are studied. Temperature dependence (25–250 °C) of the ideality factor, barrier height, and specific on-resistance is also analyzed from the J–V–T characteristics of the fabricated Schottky diodes.
more » « less- NSF-PAR ID:
- 10364165
- Publisher / Repository:
- American Institute of Physics
- Date Published:
- Journal Name:
- Applied Physics Letters
- Volume:
- 120
- Issue:
- 12
- ISSN:
- 0003-6951
- Page Range / eLocation ID:
- Article No. 122106
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
The effects of downstream plasma exposure with O 2 , N 2 or CF 4 discharges on Si-doped Ga 2 O 3 Schottky diode forward and reverse current-voltage characteristics were investigated. The samples were exposed to discharges with rf power of 50 W plasma at a pressure of 400 mTorr and a fixed treatment time of 1 min to simulate dielectric layer removal, photoresist ashing or surface cleaning steps. Schottky contacts were deposited through a shadow mask after exposure to avoid any changes to the surface. A Schottky barrier height of 1.1 eV was obtained for the reference sample without plasma treatment, with an ideality factor of 1.0. The diodes exposed to CF 4 showed a 0.25 V shift from the I–V of the reference sample due to a Schottky barrier height lowering around 14%. The diodes showed a decrease of Schottky barrier height of 2.5 and 6.5% with O 2 or N 2 treatments, respectively. The effect of plasma exposure on the ideality factor of diodes treated with these plasmas was minimal; 0.2% for O 2 and N 2 , 0.3% for CF 4 , respectively. The reverse leakage currents were 1.2, 2.2 and 4.8 μ A cm −2 for the diodes treated with O 2 , and CF 4 , and N 2 respectively. The effect of downstream plasma treatment on diode on-resistance and on-off ratio were also minimal. The changes observed are much less than caused by exposure to hydrogen-containing plasmas and indicate that downstream plasma stripping of films from Ga 2 O 3 during device processing is a relatively benign approach.more » « less
-
Abstract A unique field termination structure combining a three-step field plate with nitrogen ion implantation to enhance the reverse breakdown performance of Pt/
β -Ga2O3Schottky barrier diodes (SBDs) and NiO/β -Ga2O3heterojunction diodes (HJDs) is reported. The fabricated devices showed a lowR on,spof 6.2 mΩ cm2for SBDs and 6.8 mΩ cm2for HJDs. HJDs showed a 0.8 V turn-on voltage along with an ideality factor of 1.1 leading to a low effective on-resistance of 18 mΩ cm2. The devices also showed low reverse leakage current (<1 mA cm−2) and a breakdown voltage of ∼1.4 kV. These results offer an alternative, simpler route for fabricating high-performance kilovolt-classβ -Ga2O3diodes. -
Growing a thick high-quality epitaxial layer on the β-Ga2O3 substrate is crucial in commercializing β-Ga2O3 devices. Metal organic chemical vapor deposition (MOCVD) is also well-established for the large-scale commercial growth of β-Ga2O3 and related heterostructures. This paper presents a systematic study of the Schottky barrier diodes fabricated on two different Si-doped homoepitaxial β-Ga2O3 thin films grown on Sn-doped (001) and (010) β-Ga2O3 substrates by MOCVD. X-ray diffraction analysis of the MOCVD-grown sample, room temperature current density–voltage data for different Schottky diodes, and C–V measurements are presented. Diode characteristics, such as ideality factor, barrier height, specific on-resistance, and breakdown voltage, are studied. Temperature dependence (170–360 K) of the ideality factor, barrier height, and Poole–Frenkel reverse leakage mechanism are also analyzed from the J–V–T characteristics of the fabricated Schottky diodes.
-
Focused Ga + ion milling of lightly Si-doped, n-type Ga 2 O 3 was performed with 2–30 kV ions at normal incidence and beam currents that were a function of beam voltage, 65 nA for 30 kV, 26 nA for 10 kV, 13 nA for 5 kV, and 7.1 nA for 2 kV, to keep the milling depth constant at 100 nm. Approximate milling rates were 15, 6, 2.75, and 1.5 μm 3 /s for 30, 10, 5, and 2 kV, respectively. The electrical effects of the ion damage were characterized by Schottky barrier height and diode ideality factor on vertical rectifier structures comprising 10 μm epitaxial n-Ga 2 O 3 on n + Ga 2 O 3 substrates, while the structural damage was imaged by transmission electron microscopy. The reverse bias leakage was largely unaffected even by milling at 30 kV beam energy, while the forward current-voltage characteristics showed significant deterioration at 5 kV, with an increase in the ideality factor from 1.25 to 2.25. The I–V characteristics no longer showed rectification for the 30 kV condition. Subsequent annealing up to 400 °C produced substantial recovery of the I–V characteristics for all beam energies and was sufficient to restore the initial ideality factor completely for beam energies up to 5 kV. Even the 30 kV-exposed rectifiers showed a recovery of the ideality factor to 1.8. The surface morphology of the ion-milled Ga 2 O 3 was smooth even at 30 kV ion energy, with no evidence for preferential sputtering of the oxygen. The surface region was not amorphized by extended ion milling (35 min) at 5 kV with the samples held at 25 °C, as determined by electron diffraction patterns, and significant recovery of the lattice order was observed after annealing at 400 °C.more » « less
-
The thermal stability of n/n + β -Ga 2 O 3 epitaxial layer/substrate structures with sputtered ITO on both sides to act as rectifying contacts on the lightly doped layer and Ohmic on the heavily doped substrate is reported. The resistivity of the ITO deposited separately on Si decreased from 1.83 × 10 −3 Ω.cm as-deposited to 3.6 × 10 −4 Ω.cm after 300 °C anneal, with only minor reductions at higher temperatures (2.8 × 10 −4 Ω.cm after 600 °C anneals). The Schottky barrier height also decreased with annealing, from 0.98 eV in the as-deposited samples to 0.85 eV after 500 °C annealing. The reverse breakdown voltage exhibited a negative temperature coefficient of −0.46 V.C −1 up to an annealing temperature of 400 °C and degraded faster at higher temperatures. Transmission Electron Microscopy showed significant reaction at the ITO and Ga 2 O 3 interface above 300 °C, with a very degraded contact stack after annealing at 500 °C.more » « less