skip to main content

Title: Manipulating Exchange Bias in a Van der Waals Ferromagnet

Spintronics applications of thin‐film magnets require control and design of specific magnetic properties. Exchange bias, originating from the pinning of spins in a ferromagnet by these of an antiferromagnet, is a part of the highly important elements for spintronics applications. Here, an exchange bias of ≈90 mT in a van der Waals ferromagnet encapsulated by two antiferromagnets at 5 K, the value of which is highly tunable by the field coolings, is reported. The non‐antisymmetric dependence of exchange bias on field cooling is explained through considering an uncompensated interfacial magnetic layer of an antiferromagnet with a noncollinear spin texture, and a weak antiferromagnetic order in the oxidized layer, at two ferromagnet/antiferromagnet interfaces. This work opens up new routes toward designing and controlling 2D spintronic devices made of atomically thin van der Waals magnets.

more » « less
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Materials
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Magnetic van der Waals heterostructures provide a unique platform to study magnetism and spintronics device concepts in the 2D limit. Here, studies of exchange bias from the van der Waals antiferromagnet CrSBr acting on the van der Waals ferromagnet Fe3GeTe2(FGT) are reported. The orientation of the exchange bias is along the in‐plane easy axis of CrSBr, perpendicular to the out‐of‐plane anisotropy of the FGT, inducing a strongly tilted magnetic configuration in the FGT. Furthermore, the in‐plane exchange bias provides sufficient symmetry breaking to allow deterministic spin–orbit torque switching of the FGT in CrSBr/FGT/Pt samples at zero applied magnetic field. A minimum thickness of the CrSBr of >10 nm is needed to provide a non‐zero exchange bias at 30 K.

    more » « less
  2. Abstract Van der Waals (vdW) material Fe 5 GeTe 2 , with its long-range ferromagnetic ordering near room temperature, has significant potential to become an enabling platform for implementing novel spintronic and quantum devices. To pave the way for applications, it is crucial to determine the magnetic properties when the thickness of Fe 5 GeTe 2 reaches the few-layers regime. However, this is highly challenging due to the need for a characterization technique that is local, highly sensitive, artifact-free, and operational with minimal fabrication. Prior studies have indicated that Curie temperature T C can reach up to close to room temperature for exfoliated Fe 5 GeTe 2 flakes, as measured via electrical transport; there is a need to validate these results with a measurement that reveals magnetism more directly. In this work, we investigate the magnetic properties of exfoliated thin flakes of vdW magnet Fe 5 GeTe 2 via quantum magnetic imaging technique based on nitrogen vacancy centers in diamond. Through imaging the stray fields, we confirm room-temperature magnetic order in Fe 5 GeTe 2 thin flakes with thickness down to 7 units cell. The stray field patterns and their response to magnetizing fields with different polarities is consistent with previously reported perpendicular easy-axis anisotropy. Furthermore, we perform imaging at different temperatures and determine the Curie temperature of the flakes at ≈300 K. These results provide the basis for realizing a room-temperature monolayer ferromagnet with Fe 5 GeTe 2 . This work also demonstrates that the imaging technique enables rapid screening of multiple flakes simultaneously as well as time-resolved imaging for monitoring time-dependent magnetic behaviors, thereby paving the way towards high throughput characterization of potential two-dimensional (2D) magnets near room temperature and providing critical insights into the evolution of domain behaviors in 2D magnets due to degradation. 
    more » « less
  3. Abstract

    Being able to electrically manipulate the magnetic properties in recently discovered van der Waals ferromagnets is essential for their integration in future spintronics devices. Here, the magnetization of a semiconducting 2D ferromagnet, i.e., Cr2Ge2Te6, is studied using the anomalous Hall effect in Cr2Ge2Te6/tantalum heterostructures. The thinner the flakes, hysteresis and remanence in the magnetization loop with out‐of‐plane magnetic fields become more prominent. In order to manipulate the magnetization in such thin flakes, a combination of an in‐plane magnetic field and a charge current flowing through Ta—a heavy metal exhibiting giant spin Hall effect—is used. In the presence of in‐plane fields of 20 mT, charge current densities as low as 5 × 105A cm–2are sufficient to switch the out‐of‐plane magnetization of Cr2Ge2Te6. This finding highlights that current densities required for spin‐orbit torque switching of Cr2Ge2Te6are about two orders of magnitude lower than those required for switching nonlayered metallic ferromagnets such as CoFeB. The results presented here show the potential of 2D ferromagnets for low‐power memory and logic applications.

    more » « less
  4. Abstract

    Recent developments in 2D magnetic materials have motivated the search for new van der Waals magnetic materials, especially Ising‐type magnets with strong magnetic anisotropy. Fe‐basedMPX3(M= transition metal,X= chalcogen) compounds such as FePS3and FePSe3both exhibit an Ising‐type magnetic order, but FePSe3receives much less attention compared to FePS3. This work focuses on establishing the strategy to engineer magnetic anisotropy and exchange interactions in this less‐explored compound. Through chalcogen and metal substitutions, the magnetic anisotropy is found to be immune against S substitution for Se whereas tunable only with heavy Mn substitution for Fe. In particular, Mn substitution leads to a continuous rotation of magnetic moments from the out‐of‐plane direction toward the in‐plane. Furthermore, the magnetic ordering temperature displays non‐monotonic doping dependence for both chalcogen and metal substitutions but due to different mechanisms. These findings provide deeper insight into the Ising‐type magnetism in this important van der Waals material, shedding light on the study of other Ising‐type magnetic systems as well as discovering novel 2D magnets for potential applications in spintronics.

    more » « less
  5. The sustained interest in investigating magnetism in the 2D limit of insulating antiferromagnets is driven by the possibilities of discovering, or engineering, novel magnetic phases through layer stacking. However, due to the difficulty of directly measuring magnetic interactions in 2D antiferromagnets, it is not yet understood howintralayer magnetic interactions ininsulating, strongly correlated, materials can be modified through layer proximity. Herein, the impact of reduced dimensionality in the model van der Waals antiferromagnet NiPS3is explored by measuring electronic excitations in exfoliated samples using Resonant Inelastic X‐ray Scattering (RIXS). The resulting spectra shows systematic broadening of NiS6multiplet excitations with decreasing layer count from bulk down to three atomic layers (3L). It is shown that these trends originate from a decrease in transition metal‐ligand and ligand–ligand hopping integrals, and by charge‐transfer energy evolving from Δ = 0.83 eV in the bulk to 0.37 eV in 3L NiPS3. Relevant intralayer magnetic exchange integrals computed from the electronic parameters exhibit a decrease in the average interaction strength with thickness. This study underscores the influence ofinterlayer electronic interactions onintralayer ones in insulating magnets, indicating that magnetic Hamiltonians in few‐layer insulating magnets can greatly deviate from their bulk counterparts.

    more » « less