Combinations of correlated floral traits have arisen repeatedly across angiosperms through convergent evolution in response to pollinator selection to optimize reproduction. While some plant groups exhibit very distinct combinations of traits adapted to specific pollinators (so-called pollination syndromes), others do not. Determining how floral traits diverge across clades and whether floral traits show predictable correlations in diverse groups of flowering plants is key to determining the extent to which pollinator-mediated selection drives diversification. The North AmericanSilenesectionPhysolychnisis an ideal group to investigate patterns of floral evolution because it is characterized by the evolution of novel red floral color, extensive floral morphological variation, polyploidy, and exposure to a novel group of pollinators (hummingbirds). We test for correlated patterns of trait evolution that would be consistent with convergent responses to selection in the key floral traits of color and morphology. We also consider both the role of phylogenic distance and geographic overlap in explaining patterns of floral trait variation. Inconsistent with phenotypically divergent pollination syndromes, we find very little clustering of North AmericanSileneinto distinct floral morphospace. We also find little evidence that phylogenetic history or geographic overlap explains patterns of floral diversity in this group. White- and pink-flowering species show extensive phenotypic diversity but are entirely overlapping in morphological variation. However, red-flowering species have much less phenotypic disparity and cluster tightly in floral morphospace. We find that red-flowering species have evolved floral traits that align with a traditional hummingbird syndrome, but that these trait values overlap with several white and pink species as well. Our findings support the hypothesis that convergent evolution does not always proceed through comparative phenotypic divergence, but possibly through sorting of standing ancestral variation.
more »
« less
Evolution of antagonistic and mutualistic traits in the yucca‐yucca moth obligate pollination mutualism
Abstract Species interactions shape the evolution of traits, life histories and the pattern of speciation. What is less clear is whether certain types of species interaction are more or less likely to lead to phenotypic divergence among species. We used the brood pollination mutualism between yuccas and yucca moths to test how mutualistic (pollination) and antagonistic (oviposition) traits differ in the propensity to increase phenotypic divergence among pollinator moths. We measured traits of the tentacular mouthparts, structures used by females to actively pollinate flowers, as well as ovipositor traits to examine differences in the rate of evolution of these two suites of traits among pollinator species. Morphological analyses revealed two distinct groups of moths based on ovipositor morphology, but no such groupings were identified for tentacle morphology, even for moths that pollinated distantly related yuccas. In addition, ovipositor traits evolved at significantly faster rates than tentacular traits. These results support theoretical work suggesting that antagonism is more likely than mutualism to lead to phenotypic divergence.
more »
« less
- Award ID(s):
- 1556568
- PAR ID:
- 10364210
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- Journal of Evolutionary Biology
- Volume:
- 35
- Issue:
- 1
- ISSN:
- 1010-061X
- Format(s):
- Medium: X Size: p. 100-108
- Size(s):
- p. 100-108
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Patterns of morphological divergence across species’ ranges can provide insight into local adaptation and speciation. In this study, we compared phenotypic divergence among 4,221 crickets from 337 populations of two closely related species of field cricket,Gryllus firmusandG. pennsylvanicus, and their hybrids. We found that these species differ across their geographic range in key morphological traits, such as body size and ovipositor length, and we directly compared phenotype with genotype for a subset of crickets to demonstrate nuclear genetic introgression, phenotypic intermediacy of hybrids, and essentially unidirectional mitochondrial introgression. We discuss how these morphological traits relate to life history differences between the two species. Our comparisons across geographic areas support prior research suggesting that cryptic variation withinG. firmusmay represent different species. Our study highlights how variable morphology can be across wide-ranging species and the importance of studying reproductive barriers in more than one or two transects of a hybrid zone.more » « less
-
Abstract The arrangement of plant species within a landscape influences pollination via changes in pollinator movement trajectories and plant–pollinator encounter rates. Yet the combined effects of landscape composition and pollinator traits (especially specialisation) on pollination success remain hard to quantify empirically.We used an individual‐based model to explore how landscape and pollinator specialisation (degree) interact to influence pollination. We modelled variation in the landscape by generating gradients of plant species intermixing—from no mixing to complete intermixing. Furthermore, we varied the level of pollinator specialisation by simulating plant–pollinator (six to eight species) networks of different connectance. We then compared the impacts of these drivers on three proxies for pollination: visitation rate, number of consecutive visits to the focal plant species and expected number of plants pollinated.We found that the spatial arrangements of plants and pollinator degree interact to determine pollination success, and that the influence of these drivers on pollination depends on how pollination is estimated. For most pollinators, visitation rate increases in more plant mixed landscapes. Compared to the two more functional measures of pollination, visitation rate overestimates pollination service. This is particularly severe in landscapes with high plant intermixing and for generalist pollinators. Interestingly, visitation rate is less influenced by pollinator traits (pollinator degree and body size) than are the two functional metrics, likely because ‘visitation rate’ ignores the order in which pollinators visit plants. However, the visitation sequence order is crucial for the expected number of plants pollinated, since only prior visits to conspecific individuals can contribute to pollination. We show here that this order strongly depends on the spatial arrangements of plants, on pollinator traits and on the interaction between them.Taken together, our findings suggest that visitation rate, the most commonly used proxy for pollination in network studies, should be complemented with more functional metrics which reflect the frequency with which individual pollinators revisit the same plant species. Our findings also suggest that measures of landscape structure such as plant intermixing and density—in combination with pollinators' level of specialism—can improve estimates of the probability of pollination. Read the freePlain Language Summaryfor this article on the Journal blog.more » « less
-
null (Ed.)Coevolution between plants and insects is thought to be responsible for generating biodiversity. Extensive research has focused largely on antagonistic herbivorous relationships, but mutualistic pollination systems also likely contribute to diversification. Here we describe an example of chemically-mediated mutualistic species interactions affecting trait evolution and lineage diversification. We show that volatile compounds produced by closely related species of Zamia cycads are more strikingly different from each other than are other phenotypic characters, and that two distantly related pollinating weevil species have specialized responses only to volatiles from their specific host Zamia species. Plant transcriptomes show that approximately a fifth of genes related to volatile production are evolving under positive selection, but we find no differences in the relative proportion of genes under positive selection in different categories. The importance of phenotypic divergence coupled with chemical communication for the maintenance of this obligate mutualism highlights chemical signaling as a key mechanism of coevolution between cycads and their weevil pollinators.more » « less
-
150 Years of Coevolution Research: Evolution and Ecology of Yucca Moths (Prodoxidae) and Their HostsYucca moths ( Tegeticula and Parategeticula) are specialized pollinators of yucca plants, possessing unique, tentacle-like mouthparts used to actively collect pollen and deposit it onto the flowers of their hosts. The moths' larvae feed on the developing seeds and fruit tissue. First described in 1873, the yucca–yucca moth pollination system is now considered the archetypical example of a coevolved intimate mutualism. Research conducted over the past three decades has transformed our understanding of yucca moth diversity and host plant interactions. We summarize the current understanding of the diversity, ecology, and evolution of this group, review evidence for coevolution of the insects and their hosts, and describe how the nature of the interaction varies across evolutionary time and ecological contexts. Finally, we identify unresolved questions and areas for future research.more » « less