skip to main content

Title: NGC 5846-UDG1: A Galaxy Formed Mostly by Star Formation in Massive, Extremely Dense Clumps of Gas
Abstract

It has been shown that ultra-diffuse galaxies (UDGs) have higher specific frequencies of globular clusters, on average, than other dwarf galaxies with similar luminosities. The UDG NGC 5846-UDG1 is among the most extreme examples of globular cluster–rich galaxies found so far. Here we present new Hubble Space Telescope observations and analysis of this galaxy and its globular cluster system. We find that NGC 5846-UDG1 hosts 54 ± 9 globular clusters, three to four times more than any previously known galaxy with a similar luminosity and higher than reported in previous studies. With a galaxy luminosity ofLV,gal≈ 6 × 107L(M≈ 1.2 × 108M) and a total globular cluster luminosity ofLV,GCs≈ 7.6 × 106L, we find that the clusters currently comprise ∼13% of the total light. Taking into account the effects of mass loss from clusters during their formation and throughout their lifetime, we infer that most of the stars in the galaxy likely formed in globular clusters, and very little to no “normal” low-density star formation occurred. This result implies that the most extreme conditions during early galaxy formation promoted star formation in massive and dense clumps, in contrast to the dispersed star formation observed in galaxies today.

Authors:
; ; ; ; ; ; ; ; ; ; ; ;
Publication Date:
NSF-PAR ID:
10364237
Journal Name:
The Astrophysical Journal Letters
Volume:
927
Issue:
2
Page Range or eLocation-ID:
Article No. L28
ISSN:
2041-8205
Publisher:
DOI PREFIX: 10.3847
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We report CO(5 → 4) and CO(6 → 5) line observations in the dusty starbursting galaxy CRLE (z= 5.667) and the main-sequence (MS) galaxy HZ10 (z= 5.654) with the Northern Extended Millimeter Array. CRLE is the most luminousz> 5 starburst in the COSMOS field and HZ10 is the most gas-rich “normal” galaxy currently known atz> 5. We find line luminosities for CO(5 → 4) and CO(6 → 5) of (4.9 ± 0.5) and (3.8 ± 0.4) × 1010K km s−1pc2for CRLE and upper limits of < 0.76 and < 0.60 × 1010K km s−1pc2for HZ10, respectively. The CO excitation of CRLE appears comparable to otherz> 5 dusty star-forming galaxies. For HZ10, these line luminosity limits provide the first significant constraints of this kind for an MS galaxy atz> 5. We find the upper limit ofL54/L21in HZ10 could be similar to the average value for MS galaxies aroundz≈ 1.5, suggesting that MS galaxies with comparable gas excitation may already have existed one billion years after the Big Bang. For CRLE we determine the most likely values for the H2density, kinetic temperature, and dust temperature based on excitation modeling of the CO line ladder. Wemore »also derive a total gas mass of (7.1 ± 1.3) × 1010M. Our findings provide some of the currently most detailed constraints on the gas excitation that sets the conditions for star formation in a galaxy protocluster environment atz> 5.

    « less
  2. ABSTRACT We present an analysis of Hubble Space Telescope observations of globular clusters (GCs) in six ultradiffuse galaxies (UDGs) in the Coma cluster, a sample that represents UDGs with large effective radii (Re), and use the results to evaluate competing formation models. We eliminate two significant sources of systematic uncertainty in the determination of the number of GCs, NGC by using sufficiently deep observations that (i) reach the turnover of the globular cluster luminosity function (GCLF) and (ii) provide a sufficient number of GCs with which to measure the GC number radial distribution. We find that NGC for these galaxies is on average ∼ 20, which implies an average total mass, Mtotal, ∼ 1011 M⊙ when applying the relation between NGC and Mtotal. This value of NGC lies at the upper end of the range observed for dwarf galaxies of the same stellar mass and is roughly a factor of two larger than the mean. The GCLF, radial profile, and average colour are more consistent with those observed for dwarf galaxies than with those observed for the more massive (L*) galaxies, while both the radial and azimuthal GC distributions closely follow those of the stars in the host galaxy. Finally, we discuss whymore »our observations, specifically the GC number and GC distribution around these six UDGs, pose challenges for several of the currently favoured UDG formation models.« less
  3. Abstract

    We present the analysis of ∼100 pc scale compact radio continuum sources detected in 63 local (ultra)luminous infrared galaxies (U/LIRGs;LIR≥ 1011L), using FWHM ≲ 0.″1–0.″2 resolution 15 and 33 GHz observations with the Karl G. Jansky Very Large Array. We identify a total of 133 compact radio sources with effective radii of 8–170 pc, which are classified into four main categories—“AGN” (active galactic nuclei), “AGN/SBnuc” (AGN-starburst composite nucleus), “SBnuc” (starburst nucleus), and “SF” (star-forming clumps)—based on ancillary data sets and the literature. We find that “AGN” and “AGN/SBnuc” more frequently occur in late-stage mergers and have up to 3 dex higher 33 GHz luminosities and surface densities compared with “SBnuc” and “SF,” which may be attributed to extreme nuclear starburst and/or AGN activity in the former. Star formation rates (SFRs) and surface densities (ΣSFR) are measured for “SF” and “SBnuc” using both the total 33 GHz continuum emission (SFR ∼ 0.14–13Myr−1, ΣSFR∼ 13–1600Myr−1kpc−2) and the thermal free–free emission from Hiiregions (median SFRth∼ 0.4Myr−1,ΣSFRth44Myr−1kpc−2). These values are 1–2 dex higher than those measured for similar-sized clumps in nearby normal (non-U/LIRGs). The latter also have a much flatter median 15–33 GHz spectral index (∼−0.08) compared withmore »“SBnuc” and “SF” (∼−0.46), which may reflect higher nonthermal contribution from supernovae and/or interstellar medium densities in local U/LIRGs that directly result from and/or lead to their extreme star-forming activities on 100 pc scales.

    « less
  4. Abstract Using Hubble Space Telescope imaging of the resolved stellar population of KK 242 = NGC 6503-d1 =PGC 4689184, we measure the distance to the galaxy to be 6.46 ± 0.32 Mpc and find that KK 242 is a satellite of the low-mass spiral galaxy NGC 6503 located on the edge of the Local Void. Observations with the Karl G. Jansky Very Large Array show signs of a very faint H i signal at the position of KK 242 within a velocity range of V hel = −80 ± 10 km s −1 . This velocity range is severely contaminated by H i emission from the Milky Way and from NGC 6503. The dwarf galaxy is classified as the transition type, dIrr/dSph, with a total H i mass of < 10 6 M ⊙ and a star formation rate SFR(H α ) = −4.82 dex ( M ⊙ yr −1 ). Being at a projected separation of 31 kpc with a radial velocity difference of—105 km s −1 relative to NGC 6503, KK 242 gives an estimate of the halo mass of the spiral galaxy to be log ( M / M ⊙ ) = 11.6. Besides NGC 6503, theremore »are eight more detached low-luminosity spiral galaxies in the Local Volume: M33, NGC 2403, NGC 7793, NGC 1313, NGC 4236, NGC 5068, NGC 4656, and NGC 7640, from whose small satellites we have estimated the average total mass of the host galaxies and their average total mass-to- K -band-luminosity 〈 M T / M ⊙ 〉 = (3.46 ± 0.84) × 10 11 and (58 ± 19) M ⊙ / L ⊙ , respectively.« less
  5. Abstract

    We report the discoveries of a nuclear ring of diameter 10″ (∼1.5 kpc) and a potential low-luminosity active galactic nucleus (LLAGN) in the radio continuum emission map of the edge-on barred spiral galaxy NGC 5792. These discoveries are based on the Continuum Halos in Nearby Galaxies—an Expanded Very Large Array (VLA) Survey, as well as subsequent VLA observations of subarcsecond resolution. Using a mixture of Hαand 24μm calibrations, we disentangle the thermal and nonthermal radio emission of the nuclear region and derive a star formation rate (SFR) of ∼0.4Myr−1. We find that the nuclear ring is dominated by nonthermal synchrotron emission. The synchrotron-based SFR is about three times the mixture-based SFR. This result indicates that the nuclear ring underwent more intense star-forming activity in the past, and now its star formation is in the low state. The subarcsecond VLA images resolve six individual knots on the nuclear ring. The equipartition magnetic field strengthBeqof the knots varies from 77 to 88μG. The radio ring surrounds a point-like faint radio core ofS6 GHz= (16 ± 4)μJy with polarized lobes at the center of NGC 5792, which suggests an LLAGN with an Eddington ratio of ∼10−5. This radio nuclear ring is reminiscentmore »of the Central Molecular Zone of the Galaxy. Both of them consist of a nuclear ring and LLAGN.

    « less