Abstract Despite broad recognition that water is a major limiting factor in arid ecosystems, we lack an empirical understanding of how this resource is shared and distributed among neighbouring plants. Intraspecific variability can further contribute to this variation via divergent life‐history traits, including root architecture. We investigated these questions in the shrubArtemisia tridentataand hypothesized that the ability to access and utilize surface water varies among subspecies and cytotypes.We used an isotope tracer to quantify below‐ground zone of influence inA. tridentata, and tested whether spatial neighbourhood characteristics can alter plant water uptake. We introduced deuterium‐enriched water to the soil in plant interspaces in a common garden experiment and measured deuterium composition of plant stems. We then applied spatially explicit models to test for differential water uptake byA. tridentata, including intermingled populations of three subspecies and two ploidy levels.The results suggest that lateral root functioning inA. tridentatais associated with intraspecific identity and ploidy level. Subspecies adapted to habitats with deep soils generally had a smaller horizontal reach, and polyploid cytotypes were associated with greater water uptake compared to their diploid variants. We also found that plant crown volume was a weak predictor of water uptake, and that neighbourhood crowding had no discernable effect on water uptake.Intraspecific variation in lateral root functioning can lead to differential patterns of resource acquisition, an essential process in arid ecosystems in the contexts of changing climate and seasonal patterns of precipitation. Altogether, we found that lateral root development and activity are more strongly related to genetic variability withinA. tridentatathan to plant size. Our study highlights how intraspecific variation in life strategies is linked to mechanisms of resource acquisition. A freePlain Language Summarycan be found within the Supporting Information of this article.
more »
« less
Intraspecific variation mediates density dependence in a genetically diverse plant species
Abstract Interactions between neighboring plants are critical for biodiversity maintenance in plant populations and communities. Intraspecific trait variation and genome duplication are common in plant species and can drive eco‐evolutionary dynamics through genotype‐mediated plant–plant interactions. However, few studies have examined how species‐wide intraspecific variation may alter interactions between neighboring plants. We investigate how subspecies and ploidy variation in a genetically diverse species, big sagebrush (Artemisia tridentata), can alter the demographic outcomes of plant interactions. Using a replicated, long‐term common garden experiment that represents range‐wide diversity ofA. tridentata, we ask how intraspecific variation, environment, and stand age mediate neighbor effects on plant growth and survival. Spatially explicit models revealed that ploidy variation and subspecies identity can mediate plant–plant interactions but that the effect size varied in time and across experimental sites. We found that demographic impacts of neighbor effects were strongest during early stages of stand development and in sites with greater growth rates. Within subspecies, tetraploid populations showed greater tolerance to neighbor crowding compared to their diploid variants. Our findings provide evidence that intraspecific variation related to genome size and subspecies identity impacts spatial demography in a genetically diverse plant species. Accounting for intraspecific variation in studies of conspecific density dependence will improve our understanding of how local populations will respond to novel genotypes and biotic interaction regimes. As introduction of novel genotypes into local populations becomes more common, quantifying demographic processes in genetically diverse populations will help predict long‐term consequences of plant–plant interactions.
more »
« less
- Award ID(s):
- 1757324
- PAR ID:
- 10364247
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Ecology
- Volume:
- 102
- Issue:
- 11
- ISSN:
- 0012-9658
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Understanding interactions between environmental stress and genetic variation is crucial to predict the adaptive capacity of species to climate change. Leaf temperature is both a driver and a responsive indicator of plant physiological response to thermal stress, and methods to monitor it are needed. Foliar temperatures vary across leaf to canopy scales and are influenced by genetic factors, challenging efforts to map and model this critical variable. Thermal imagery collected using unoccupied aerial systems (UAS) offers an innovative way to measure thermal variation in plants across landscapes at leaf‐level resolutions. We used a UAS equipped with a thermal camera to assess temperature variation among genetically distinct populations of big sagebrush (Artemisia tridentata), a keystone plant species that is the focus of intensive restoration efforts throughout much of western North America. We completed flights across a growing season in a sagebrush common garden to map leaf temperature relative to subspecies and cytotype, physiological phenotypes of plants, and summer heat stress. Our objectives were to (1) determine whether leaf‐level stomatal conductance corresponds with changes in crown temperature; (2) quantify genetic (i.e., subspecies and cytotype) contributions to variation in leaf and crown temperatures; and (3) identify how crown structure, solar radiation, and subspecies‐cytotype relate to leaf‐level temperature. When considered across the whole season, stomatal conductance was negatively, non‐linearly correlated with crown‐level temperature derived from UAS. Subspecies identity best explained crown‐level temperature with no difference observed between cytotypes. However, structural phenotypes and microclimate best explained leaf‐level temperature. These results show how fine‐scale thermal mapping can decouple the contribution of genetic, phenotypic, and microclimate factors on leaf temperature dynamics. As climate‐change‐induced heat stress becomes prevalent, thermal UAS represents a promising way to track plant phenotypes that emerge from gene‐by‐environment interactions.more » « less
-
Abstract Feedbacks between plants and soil microbial communities can play an important role in structuring plant communities. However, little is known about how soil legacies caused by environmental disturbances such as drought and extreme precipitation events may affect plant–soil feedback or whether plant–soil feedback operates within species as it does between species. If soil legacies alter plant–soil feedback among genotypes within a plant species, then soil legacies may alter the diversity within plant populations. We conducted a fully factorial pairwise plant–soil feedback experiment to test how precipitation legacies influenced intraspecific plant–soil feedbacks among three genotypes of a dominant grass species,Panicum virgatum.Panicum virgatumexperienced negative intraspecific plant–soil feedback, i.e., genotypes generally performed worse on soil from the same genotype than different genotypes. Soil precipitation legacies reversed the rank order of the strength of negative feedback among the genotypes. Feedback is often positively correlated with plant relative abundance. Therefore, our results suggest that soil precipitation legacies may alter the genotypic composition ofP. virgatumpopulations, favoring genotypes that develop less negative feedback. Changes in intraspecific diversity will likely further affect community structure and ecosystem functioning, and may constrain the ability of populations to respond to future changes in climate.more » « less
-
Current and past climatic changes can shift plant climatic niches, which may cause spatial overlap or separation between related taxa. The former often leads to hybridization and introgression, which may generate novel variation and influence the adaptive capacity of plants. An additional mechanism facilitating adaptations to novel environments and an important evolutionary driver in plants is polyploidy as the result of whole genome duplication. Artemisia tridentata (big sagebrush) is a landscape-dominating foundational shrub in the western United States which occupies distinct ecological niches, exhibiting diploid and tetraploid cytotypes. Tetraploids have a large impact on the species’ landscape dominance as they occupy a preponderance of the arid spectrum of A. tridentata range. Three distinct subspecies are recognized, which co-occur in ecotones – the transition zone between two or more distinct ecological niches – allowing for hybridization and introgression. Here we assess the genomic distinctiveness and extent of hybridization among subspecies at different ploidies under both contemporary and predicted future climates. We sampled five transects throughout the western United States where a subspecies overlap was predicted using subspecies-specific climate niche models. Along each transect, we sampled multiple plots representing the parental and the potential hybrid habitats. We performed reduced representation sequencing and processed the data using a ploidy-informed genotyping approach. Population genomic analyses revealed distinct diploid subspecies and at least two distinct tetraploid gene pools, indicating independent origins of the tetraploid populations. We detected low levels of hybridization (2.5%) between the diploid subspecies, while we found evidence for increased admixture between ploidy levels (18%), indicating hybridization has an important role in the formation of tetraploids. Our analyses highlight the importance of subspecies co-occurrence within these ecotones to maintain gene exchange and potential formation of tetraploid populations. Genomic confirmations of subspecies in the ecotones support the subspecies overlap predicted by the contemporary climate niche models. However, future mid-century projections of subspecies niches predict a substantial loss in range and subspecies overlap. Thus, reductions in hybridization potential could affect new recruitment of genetically variable tetraploids that are vital to this species’ ecological role. Our results underscore the importance of ecotone conservation and restoration.more » « less
-
Abstract PremiseTheory predicts that mixed ploidy populations should be short‐lived due to strong fitness disadvantages for the rare ploidy. However, mixed ploidy populations are common, suggesting that the fitness costs for rare ploidies are counterbalanced by ecological benefits that emerge when rare. We investigated whether differences in ecological interactions with soil microbes help to maintain a tetraploid–hexaploid population ofLarrea tridentata(creosote bush) in the Sonoran Desert, California, United States, where prior work documented ploidy‐specific root‐associated microbes. MethodsWe used a plant–soil feedback (PSF) experiment to test whether host‐specific soil microbes can alter the outcomes of intraploidy vs. interploidy competition. Host‐specific soil microbes can build up over time; thus, distance from a host plant can affect the fitness of nearby plants. ResultsSeedlings grown in soils from near plants of a different ploidy produced greater biomass relative to seedlings grown in soils from near plants of the same ploidy. Moreover, seedlings grown in soils from near plants of a different ploidy produced more biomass than those grown in soils that were farther from plants of a different ploidy. These results suggest that the ecological consequences of PSF may facilitate the persistence of mixed ploidy populations. ConclusionsThis is the first evidence, to our knowledge, that is consistent with plant–soil microbe feedback as a viable mechanism to maintain the coexistence of multiple ploidy levels in a single population.more » « less
An official website of the United States government
