skip to main content


Title: Multiplexed action-outcome representation by striatal striosome-matrix compartments detected with a mouse cost-benefit foraging task
Abstract

Learning about positive and negative outcomes of actions is crucial for survival and underpinned by conserved circuits including the striatum. How associations between actions and outcomes are formed is not fully understood, particularly when the outcomes have mixed positive and negative features. We developed a novel foraging (‘bandit’) task requiring mice to maximize rewards while minimizing punishments. By 2-photon Ca++imaging, we monitored activity of visually identified anterodorsal striatal striosomal and matrix neurons. We found that action-outcome associations for reward and punishment were encoded in parallel in partially overlapping populations. Single neurons could, for one action, encode outcomes of opposing valence. Striosome compartments consistently exhibited stronger representations of reinforcement outcomes than matrix, especially for high reward or punishment prediction errors. These findings demonstrate multiplexing of action-outcome contingencies by single identified striatal neurons and suggest that striosomal neurons are particularly important in action-outcome learning.

 
more » « less
NSF-PAR ID:
10364273
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Volume:
13
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Cai, Ming Bo (Ed.)
    Protection often involves the capacity to prospectively plan the actions needed to mitigate harm. The computational architecture of decisions involving protection remains unclear, as well as whether these decisions differ from other beneficial prospective actions such as reward acquisition. Here we compare protection acquisition to reward acquisition and punishment avoidance to examine overlapping and distinct features across the three action types. Protection acquisition is positively valenced similar to reward. For both protection and reward, the more the actor gains, the more benefit. However, reward and protection occur in different contexts, with protection existing in aversive contexts. Punishment avoidance also occurs in aversive contexts, but differs from protection because punishment is negatively valenced and motivates avoidance. Across three independent studies (Total N = 600) we applied computational modeling to examine model-based reinforcement learning for protection, reward, and punishment in humans. Decisions motivated by acquiring protection evoked a higher degree of model-based control than acquiring reward or avoiding punishment, with no significant differences in learning rate. The context-valence asymmetry characteristic of protection increased deployment of flexible decision strategies, suggesting model-based control depends on the context in which outcomes are encountered as well as the valence of the outcome. 
    more » « less
  2. Cai, Ming Bo (Ed.)

    A major advance in understanding learning behavior stems from experiments showing that reward learning requires dopamine inputs to striatal neurons and arises from synaptic plasticity of cortico-striatal synapses. Numerous reinforcement learning models mimic this dopamine-dependent synaptic plasticity by using the reward prediction error, which resembles dopamine neuron firing, to learn the best action in response to a set of cues. Though these models can explain many facets of behavior, reproducing some types of goal-directed behavior, such as renewal and reversal, require additional model components. Here we present a reinforcement learning model, TD2Q, which better corresponds to the basal ganglia with two Q matrices, one representing direct pathway neurons (G) and another representing indirect pathway neurons (N). Unlike previous two-Q architectures, a novel and critical aspect of TD2Q is to update the G and N matrices utilizing the temporal difference reward prediction error. A best action is selected for N and G using a softmax with a reward-dependent adaptive exploration parameter, and then differences are resolved using a second selection step applied to the two action probabilities. The model is tested on a range of multi-step tasks including extinction, renewal, discrimination; switching reward probability learning; and sequence learning. Simulations show that TD2Q produces behaviors similar to rodents in choice and sequence learning tasks, and that use of the temporal difference reward prediction error is required to learn multi-step tasks. Blocking the update rule on the N matrix blocks discrimination learning, as observed experimentally. Performance in the sequence learning task is dramatically improved with two matrices. These results suggest that including additional aspects of basal ganglia physiology can improve the performance of reinforcement learning models, better reproduce animal behaviors, and provide insight as to the role of direct- and indirect-pathway striatal neurons.

     
    more » « less
  3. Abstract The learning of stimulus-outcome associations allows for predictions about the environment. Ventral striatum and dopaminergic midbrain neurons form a larger network for generating reward prediction signals from sensory cues. Yet, the network plasticity mechanisms to generate predictive signals in these distributed circuits have not been entirely clarified. Also, direct evidence of the underlying interregional assembly formation and information transfer is still missing. Here we show that phasic dopamine is sufficient to reinforce the distinctness of stimulus representations in the ventral striatum even in the absence of reward. Upon such reinforcement, striatal stimulus encoding gives rise to interregional assemblies that drive dopaminergic neurons during stimulus-outcome learning. These assemblies dynamically encode the predicted reward value of conditioned stimuli. Together, our data reveal that ventral striatal and midbrain reward networks form a reinforcing loop to generate reward prediction coding. 
    more » « less
  4. Abstract

    The Reward‐Positivity (RewP) is a frontocentral event‐related potential elicited following reward and punishment feedback. Reinforcement learning theories propose the RewP reflects a reward prediction error that increases following more favorable (vs. unfavorable) outcomes. An alternative perspective, however, proposes this component indexes a salience‐prediction error that increases following more salient outcomes. Evidence from prior studies that included both reward and punishment conditions is mixed, supporting both accounts. However, these studies often varied how feedback stimuli were repeated across reward and punishment conditions. Differences in the frequency of feedback stimuli may drive inconsistencies by introducing salience effects for infrequent stimuli regardless of whether they are associated with rewards or punishments. To test this hypothesis, the current study examined the effect of outcome valence and stimulus frequency on the RewP and neighboring P2 and P3 components in reward, punishment, and neutral contexts across two separate experiments that varied how often feedback stimuli were repeated between conditions. Experiment 1 revealed infrequent feedback stimuli generated overlapping positivity across all three components. However, controlling for stimulus frequency, experiment 2 revealed favorable outcomes that increased RewP and P3 positivity. Together, these results suggest the RewP reflects some combination of reward‐ and salience‐prediction error encoding. Results also indicate infrequent feedback stimuli elicited strong salience effects across all three components that may inflate, eliminate, or reverse outcome valence effects for the RewP and P3. These results resolve several inconsistencies in the literature and have important implications for electrocortical investigations of reward and punishment feedback processing.

     
    more » « less
  5. Abstract

    Learning signals during reinforcement learning and cognitive control rely on valenced reward prediction errors (RPEs) and non-valenced salience prediction errors (PEs) driven by surprise magnitude. A core debate in reward learning focuses on whether valenced and non-valenced PEs can be isolated in the human electroencephalogram (EEG). We combine behavioral modeling and single-trial EEG regression to disentangle sequential PEs in an interval timing task dissociating outcome valence, magnitude, and probability. Multiple regression across temporal, spatial, and frequency dimensions characterized a spatio-tempo-spectral cascade from early valenced RPE value to non-valenced RPE magnitude, followed by outcome probability indexed by a late frontal positivity. Separating negative and positive outcomes revealed the valenced RPE value effect is an artifact of overlap between two non-valenced RPE magnitude responses: frontal theta feedback-related negativity on losses and posterior delta reward positivity on wins. These results reconcile longstanding debates on the sequence of components representing reward and salience PEs in the human EEG.

     
    more » « less