skip to main content

Title: Does Disabling Cloud Radiative Feedbacks Change Spatial Patterns of Surface Greenhouse Warming and Cooling?

The processes controlling idealized warming and cooling patterns are examined in 150-yr-long fully coupled Community Earth System Model, version 1 (CESM1), experiments under abrupt CO2forcing. By simulation end, 2 × CO2global warming was 20% larger than 0.5 × CO2global cooling. Not only was the absolute global effective radiative forcing ∼10% larger for 2 × CO2than for 0.5 × CO2, global feedbacks were also less negative for 2 × CO2than for 0.5 × CO2. Specifically, more positive shortwave cloud feedbacks led to more 2 × CO2global warming than 0.5 × CO2global cooling. Over high-latitude oceans, differences between 2 × CO2warming and 0.5 × CO2cooling were amplified by familiar linked positive surface albedo and lapse rate feedbacks associated with sea ice change. At low latitudes, 2 × CO2warming exceeded 0.5 × CO2cooling almost everywhere. Tropical Pacific cloud feedbacks amplified the following: 1) more fast warming than fast cooling in the west, and 2) slow pattern differences between 2 × CO2warming and 0.5 × CO2cooling in the east. Motivated to quantify cloud influence, a companion suite of experiments was run without cloud radiative feedbacks. Disabling cloud radiative feedbacks reduced the effective radiative forcing and surface temperature responses for both 2 × CO2and more » 0.5 × CO2. Notably, 20% more global warming than global cooling occurred regardless of whether cloud feedbacks were enabled or disabled. This surprising consistency resulted from the cloud influence on non-cloud feedbacks and circulation. With the exception of the tropical Pacific, disabling cloud feedbacks did little to change surface temperature response patterns including the large high-latitude responses driven by non-cloud feedbacks. The findings provide new insights into the regional processes controlling the response to greenhouse gas forcing, especially for clouds.

Significance Statement

We analyze the processing controlling idealized warming and cooling under abrupt CO2forcing using a modern and highly vetted fully coupled climate model. We were especially interested to compare simulations with and without cloud radiative feedbacks. Notably, 20% more global warming than global cooling occurred regardless of whether cloud feedbacks were enabled or disabled. This surprising consistency resulted from the cloud influence on forcing, non-cloud feedbacks, and circulation. With the exception of the tropical Pacific, disabling cloud feedbacks did little to change surface temperature response patterns including the large high-latitude responses driven by non-cloud feedbacks. The findings provide new insights into the regional processes controlling the response to greenhouse gas forcing, especially for clouds. When combined with estimates of cooling at the Last Glacial Maximum, the findings also help rule out large (4+ K) values of equilibrium climate sensitivity.

« less
 ;  ;  ;  ;  
Publication Date:
Journal Name:
Journal of Climate
Page Range or eLocation-ID:
p. 1787-1807
American Meteorological Society
Sponsoring Org:
National Science Foundation
More Like this
  1. Variability in the strength of low-cloud feedbacks across climate models is the primary contributor to the spread in their estimates of equilibrium climate sensitivity (ECS). This raises the question: What are the regional implications for key features of tropical climate of globally weak versus strong low-cloud feedbacks in response to greenhouse gas–induced warming? To address this question and formalize our understanding of cloud controls on tropical climate, we perform a suite of idealized fully coupled and slab-ocean climate simulations across which we systematically scale the strength of the low-cloud-cover feedback under abrupt 2 × CO2forcing within a single model, thereby isolating the impact of low-cloud feedback strength. The feedback strength is varied by modifying the stratus cloud fraction so that it is a function of not only local conditions but also global temperature in a series of abrupt 2 × CO2sensitivity experiments. The unperturbed decrease in low cloud cover (LCC) under 2 × CO2is greatest in the mid- and high-latitude oceans, and the subtropical eastern Pacific and Atlantic, a pattern that is magnified as the feedback strength is scaled. Consequently, sea surface temperature (SST) increases more in these regions as well as the Pacific cold tongue. As the strength ofmore »the low-cloud feedback increases this results in not only increased ECS, but also an enhanced reduction of the large-scale zonal and meridional SST gradients (structural climate sensitivity), with implications for the atmospheric Hadley and Walker circulations, as well as the hydrological cycle. The relevance of our results to simulating past warm climate is also discussed.

    « less
  2. Abstract

    Southern hemisphere subtropical anticyclones are projected to change in a warmer climate during both austral summer and winter. A recent study of CMIP 5 & 6 projections found a combination of local diabatic heating changes and static-stability-induced changes in baroclinic eddy growth as the dominant drivers. Yet the underlying mechanisms forcing these changes still remain uninvestigated. This study aims to enhance our mechanistic understanding of what drives these Southern Hemisphere anticyclones changes during both seasons. Using an AGCM, we decompose the response to CO2-induced warming into two components: (1) the fast atmospheric response to direct CO2radiative forcing, and (2) the slow atmospheric response due to indirect sea surface temperature warming. Additionally, we isolate the influence of tropical diabatic heating with AGCM added heating experiments. As a complement to our numerical AGCM experiments, we analyze the Atmospheric and Cloud Feedback Model Intercomparison Project experiments. Results from sensitivity experiments show that slow subtropical sea surface temperature warming primarily forces the projected changes in subtropical anticyclones through baroclinicity change. Fast CO2atmospheric radiative forcing on the other hand plays a secondary role, with the most notable exception being the South Atlantic subtropical anticyclone in austral winter, where it opposes the forcing by seamore »surface temperature changes resulting in a muted net response. Lastly, we find that tropical diabatic heating changes only significantly influence Southern Hemisphere subtropical anticyclone changes through tropospheric wind shear changes during austral winter.

    « less
  3. Abstract. Equilibrium climate sensitivity (ECS) has been directly estimated using reconstructions of past climates that are different than today's. A challenge to this approach is that temperature proxies integrate over the timescales of the fast feedback processes (e.g., changes in water vapor, snow, and clouds) that are captured in ECS as well as the slower feedback processes (e.g., changes in ice sheets and ocean circulation) that are not. A way around this issue is to treat the slow feedbacks as climate forcings and independently account for their impact on global temperature. Here we conduct a suite of Last Glacial Maximum (LGM) simulations using the Community Earth System Model version 1.2 (CESM1.2) to quantify the forcingand efficacy of land ice sheets (LISs) and greenhouse gases (GHGs) in order to estimate ECS. Our forcing and efficacy quantification adopts the effective radiative forcing (ERF) and adjustment framework and provides a complete accounting for the radiative, topographic, and dynamical impacts of LIS on surface temperatures. ERF and efficacy of LGM LIS are −3.2 W m−2 and 1.1, respectively. The larger-than-unity efficacy is caused by the temperature changes over land and the Northern Hemisphere subtropical oceans which are relatively larger than those in response to a doubling of atmospheric CO2. The subtropical sea-surface temperature (SST) response ismore »linked to LIS-induced wind changes and feedbacks in ocean–atmosphere coupling and clouds. ERF and efficacy of LGM GHG are −2.8 W m−2 and 0.9, respectively. The lower efficacy is primarily attributed to a smaller cloud feedback at colder temperatures. Our simulations further demonstrate that the direct ECS calculation using the forcing, efficacy, and temperature response in CESM1.2 overestimates the true value in the model by approximately 25 % due to the neglect of slow ocean dynamical feedback. This is supported by the greater cooling (6.8 ∘C) in a fully coupled LGM simulation than that (5.3 ∘C) in a slab ocean model simulation with ocean dynamics disabled. The majority (67 %) of the ocean dynamical feedback is attributed to dynamical changes in the Southern Ocean, where interactions between upper-ocean stratification, heat transport, and sea-ice cover are found to amplify the LGM cooling. Our study demonstrates the value of climate models in the quantification of climate forcings and the ocean dynamical feedback, which is necessary for an accurate direct ECS estimation.« less
  4. The oceanic response to recent tropical eruptions is examined in Large Ensemble (LE) experiments from two fully coupled global climate models, the Community Earth System Model (CESM) and the Geophysical Fluid Dynamics Laboratory Earth System Model (ESM2M), each forced by a distinct volcanic forcing dataset. Following the simulated eruptions of Agung, El Chichón, and Pinatubo, the ocean loses heat and gains oxygen and carbon, in general agreement with available observations. In both models, substantial global surface cooling is accompanied by El Niño–like equatorial Pacific surface warming a year after the volcanic forcing peaks. A mechanistic analysis of the CESM and ESM2M responses to Pinatubo identifies remote wind forcing from the western Pacific as a major driver of this El Niño–like response. Following eruption, faster cooling over the Maritime Continent than adjacent oceans suppresses convection and leads to persistent westerly wind anomalies over the western tropical Pacific. These wind anomalies excite equatorial downwelling Kelvin waves and the upwelling of warm subsurface anomalies in the eastern Pacific, promoting the development of El Niño conditions through Bjerknes feedbacks a year after eruption. This El Niño–like response drives further ocean heat loss through enhanced equatorial cloud albedo, and dominates global carbon uptake as upwellingmore »of carbon-rich waters is suppressed in the tropical Pacific. Oxygen uptake occurs primarily at high latitudes, where surface cooling intensifies the ventilation of subtropical thermocline waters. These volcanically forced ocean responses are large enough to contribute to the observed decadal variability in oceanic heat, carbon, and oxygen.

    « less
  5. Abstract

    The radiative cooling rate in the tropical upper troposphere is expected to increase as climate warms. Since the tropics are approximately in radiative–convective equilibrium (RCE), this implies an increase in the convective heating rate, which is the sum of the latent heating rate and the eddy heat flux convergence. We examine the impact of these changes on the vertical profile of cloud ice amount in cloud-resolving simulations of RCE. Three simulations are conducted: a control run, a warming run, and an experimental run in which there is no warming but a temperature forcing is imposed to mimic the warming-induced increase in radiative cooling. Surface warming causes a reduction in cloud fraction at all upper-tropospheric temperature levels but an increase in the ice mixing ratio within deep convective cores. The experimental run has more cloud ice than the warming run at fixed temperature despite the fact that their latent heating rates are equal, which suggests that the efficiency of latent heating by cloud ice increases with warming. An analytic expression relating the ice-related latent heating rate to a number of other factors is derived and used to understand the model results. This reveals that the increase in latent heating efficiencymore »is driven mostly by 1) the migration of isotherms to lower pressure and 2) a slight warming of the top of the convective layer. These physically robust changes act to reduce the residence time of ice at any particular temperature level, which tempers the response of the mean cloud ice profile to warming.

    Significance Statement

    Here we examine how the amount of condensed ice in part of the atmosphere—the tropical upper troposphere (UT)—responds to global warming. In the UT, the energy released during ice formation is balanced by the emission of radiation to space. This emission will strengthen with warming, suggesting that there will also be more ice. Using a model of the tropical atmosphere, we find that the increase in ice amount is mitigated by a reduction in the amount of time ice spends in the UT. This could have important implications for the cloud response to global warming, and future work should focus on how these changes are manifested across the distribution of convective cloud types.

    « less