skip to main content


Title: Discounting under Severe Weather Threat
Abstract

The human and economic costs of severe weather damage can be mitigated by appropriate preparation. Despite the benefits, researchers have only begun to examine if known decision-making frameworks apply to severe weather–related decisions. Using experiments, we found that a hyperbolic discounting function accurately described participant decisions to prepare for, and respond to, severe weather, although only delays of 1 month or longer significantly changed decisions to evacuate, suggesting that severe weather that is not imminent does not affect evacuation decisions. In contrast, the probability that a storm would impact the participant influenced evacuation and resource allocation decisions. To influence people’s evacuation decisions, weather forecasters and community planners should focus on disseminating probabilistic information when focusing on short-term weather threats (e.g., hurricanes); delay information appears to affect people’s evacuation decision only for longer-term threats, which may hold promise for climate change warnings.

 
more » « less
NSF-PAR ID:
10364366
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
American Meteorological Society
Date Published:
Journal Name:
Weather, Climate, and Society
Volume:
14
Issue:
1
ISSN:
1948-8327
Page Range / eLocation ID:
p. 65-79
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Working memory, the brain’s ability to temporarily store and recall information, is a critical part of decision making – but it has its limits. The brain can only store so much information, for so long. Since decisions are not often acted on immediately, information held in working memory ‘degrades’ over time. However, it is unknown whether or not this degradation of information over time affects the accuracy of later decisions. The tactics that people use, knowingly or otherwise, to store information in working memory also remain unclear. Do people store pieces of information such as numbers, objects and particular details? Or do they tend to compute that information, make some preliminary judgement and recall their verdict later? Does the strategy chosen impact people’s decision-making? To investigate, Schapiro et al. devised a series of experiments to test whether the limitations of working memory, and how people store information, affect the accuracy of decisions they make. First, participants were shown an array of colored discs on a screen. Then, either immediately after seeing the disks or a few seconds later, the participants were asked to recall the position of one of the disks they had seen, or the average position of all the disks. This measured how much information degraded for a decision based on multiple items, and how much for a decision based on a single item. From this, the method of information storage used to make a decision could be inferred. Schapiro et al. found that the accuracy of people’s responses worsened over time, whether they remembered the position of each individual disk, or computed their average location before responding. The greater the delay between seeing the disks and reporting their location, the less accurate people’s responses tended to be. Similarly, the more disks a participant saw, the less accurate their response became. This suggests that however people store information, if working memory reaches capacity, decision-making suffers and that, over time, stored information decays. Schapiro et al. also noticed that participants remembered location information in different ways depending on the task and how many disks they were shown at once. This suggests people adopt different strategies to retain information momentarily. In summary, these findings help to explain how people process and store information to make decisions and how the limitations of working memory impact their decision-making ability. A better understanding of how people use working memory to make decisions may also shed light on situations or brain conditions where decision-making is impaired. 
    more » « less
  2. Abstract

    Understanding how information use contributes to uncertainties surrounding evacuation decisions is crucial during disasters. While literature increasingly establishes that people consult multiple information sources in disaster situations, little is known about the patterns in which multiple media and personal network sources are combined simultaneously and sequentially across decision‐making phases. We address this gap using survey data collected from households in Jacksonville, Florida affected by 2016's Hurricane Matthew. Results direct attention to perceived consistency of information as a key predictor of uncertainty regarding hurricane impact and evacuation logistics. Frequently utilizing National Weather Service, national and local TV channels, and personal network contacts contributed to higher perceived consistency of information, while the use of other local and online sources was associated with lower perceived consistency. Furthermore, combining a larger number of media and official sources predicted higher levels of perceived information consistency. One's perception of information amount did not significantly explain uncertainty. This study contributes to the theorizing of individuals' information environment from the perspective of media and network multiplexity and provides practical implications regarding the need of information coordination for improved evacuation decision‐making.

     
    more » « less
  3. Abstract

    This study investigates how different risk predictors influenced households’ evacuation decisions during a dual‐threat event (Hurricane Laura and COVID‐19 pandemic). The Protective Action Decision Model (PADM) literature indicates that perceived threat variables are the most influential variables that drive evacuation decisions. This study applies the PADM to investigate a dual‐threat disaster that has conflicting protective action recommendations. Given the novelty, scale, span, impact, and messaging around COVID‐19, it is crucial to see how hurricanes along the Gulf Coast—a hazard addressed seasonally by residents with mostly consistent protective action messaging—produce different reactions in residents in this pandemic context. Household survey data were collected during early 2021 using a disproportionate stratified sampling procedure to include households located in mandatory and voluntary evacuation areas across the coastal counties in Texas and parishes in Louisiana that were affected by Hurricane Laura. Structural equation modeling was used to identify the relationships between perceived threats and evacuation decisions. The findings suggest affective risk perceptions strongly affected cognitive risk perceptions (CRPs). Notably, hurricane and COVID‐19 CRPs are significant predictors of hurricane evacuation decisions in different ways. Hurricane CRPs encourage evacuation, but COVID‐19 CRPs hinder evacuation decisions.

     
    more » « less
  4. Abstract

    As a result of climate change, extreme precipitation events are likely to become more common in Oklahoma, requiring cities and municipalities to plan for managing this extra water. There are multiple types of practitioners within communities who are responsible for overseeing planning for the future, including stormwater and floodplain management. These practitioners may be able to integrate weather and climate information into their decision-making to help them prepare for heavy precipitation events and their impacts. Floodplain managers from central and eastern Oklahoma were interviewed to learn what information they currently use and how it informs their decision-making. When making decisions in the short term, floodplain managers relied on weather forecasts; for long-term decisions, other factors, such as constrained budgets or the power of county officials, had more influence than specific climate predictions or projections. On all time scales, social networks and prior experience with flooding informed floodplain managers’ decisions and planning. Overall, information about weather and climate is just one component of floodplain managers’ decision-making processes. The atmospheric science community could work more collaboratively with practitioners so that information about weather and climate is more useful and, therefore, more relevant to the types of decisions that floodplain managers make.

     
    more » « less
  5. Background Developers, designers, and researchers use rapid prototyping methods to project the adoption and acceptability of their health intervention technology (HIT) before the technology becomes mature enough to be deployed. Although these methods are useful for gathering feedback that advances the development of HITs, they rarely provide usable evidence that can contribute to our broader understanding of HITs. Objective In this research, we aim to develop and demonstrate a variation of vignette testing that supports developers and designers in evaluating early-stage HIT designs while generating usable evidence for the broader research community. Methods We proposed a method called health concept surveying for untangling the causal relationships that people develop around conceptual HITs. In health concept surveying, investigators gather reactions to design concepts through a scenario-based survey instrument. As the investigator manipulates characteristics related to their HIT, the survey instrument also measures proximal cognitive factors according to a health behavior change model to project how HIT design decisions may affect the adoption and acceptability of an HIT. Responses to the survey instrument were analyzed using path analysis to untangle the causal effects of these factors on the outcome variables. Results We demonstrated health concept surveying in 3 case studies of sensor-based health-screening apps. Our first study (N=54) showed that a wait time incentive could influence more people to go see a dermatologist after a positive test for skin cancer. Our second study (N=54), evaluating a similar application design, showed that although visual explanations of algorithmic decisions could increase participant trust in negative test results, the trust would not have been enough to affect people’s decision-making. Our third study (N=263) showed that people might prioritize test specificity or sensitivity depending on the nature of the medical condition. Conclusions Beyond the findings from our 3 case studies, our research uses the framing of the Health Belief Model to elicit and understand the intrinsic and extrinsic factors that may affect the adoption and acceptability of an HIT without having to build a working prototype. We have made our survey instrument publicly available so that others can leverage it for their own investigations. 
    more » « less