skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


Title: Range edges in heterogeneous landscapes: Integrating geographic scale and climate complexity into range dynamics
Abstract

The impacts of climate change have re‐energized interest in understanding the role of climate in setting species geographic range edges. Despite the strong focus on species' distributions in ecology and evolution, defining a species range edge is theoretically and empirically difficult. The challenge of determining a range edge and its relationship to climate is in part driven by the nested nature of geography and the multidimensionality of climate, which together generate complex patterns of both climate and biotic distributions across landscapes. Because range‐limiting processes occur in both geographic and climate space, the relationship between these two spaces plays a critical role in setting range limits. With both conceptual and empirical support, we argue that three factors—climate heterogeneity, collinearity among climate variables, and spatial scale—interact to shape the spatial structure of range edges along climate gradients, and we discuss several ways that these factors influence the stability of species range edges with a changing climate. We demonstrate that geographic and climate edges are often not concordant across species ranges. Furthermore, high climate heterogeneity and low climate collinearity across landscapes increase the spectrum of possible relationships between geographic and climatic space, suggesting that geographic range edges and climatic niche limits correspond less frequently than we may expect. More empirical explorations of how the complexity of real landscapes shapes the ecological and evolutionary processes that determine species range edges will advance the development of range limit theory and its applications to biodiversity conservation in the context of changing climate.

 
more » « less
Award ID(s):
1637686
NSF-PAR ID:
10364375
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Global Change Biology
Volume:
26
Issue:
3
ISSN:
1354-1013
Page Range / eLocation ID:
p. 1055-1067
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Global change is widely altering environmental conditions which makes accurately predicting species range limits across natural landscapes critical for conservation and management decisions. If climate pressures along elevation gradients influence the distribution of phenotypic and genetic variation of plant functional traits, then such trait variation may be informative of the selective mechanisms and adaptations that help define climatic niche limits. Using extensive field surveys along 16 elevation transects and a large common garden experiment, we tested whether functional trait variation could predict the climatic niche of a widespread tree species (Populus angustifolia) with a double quantile regression approach. We show that intraspecific variation in plant size, growth, and leaf morphology corresponds with the species' total climate range and certain climatic limits related to temperature and moisture extremes. Moreover, we find evidence of genetic clines and phenotypic plasticity at environmental boundaries, which we use to create geographic predictions of trait variation and maximum values due to climatic constraints across the western US. Overall, our findings show the utility of double quantile regressions for connecting species distributions and climate gradients through trait‐based mechanisms. We highlight how new approaches like ours that incorporate genetic variation in functional traits and their response to climate gradients will lead to a better understanding of plant distributions as well as identifying populations anticipated to be maladapted to future environments.

     
    more » « less
  2. Abstract Aim

    Correlative distribution models have been used to identify potential climatic controls of mangrove range limits, but there is still uncertainty about the relative importance of these factors across different regions. To provide insights into the strength of climatic control of different mangrove range limits, we tested whether temporal variability in mangrove abundance increases near range limits and whether this variability is correlated with climatic factors thought to control large‐scale mangrove distributions.

    Location

    North and South America.

    Time period

    1984–2011.

    Major taxa studied

    Avicennia germinans,Avicennia schuaeriana,Rhizophora mangle,Laguncularia racemosa.

    Methods

    We characterized temporal variability in the enhanced vegetation index (EVI) at mangrove range limits using Landsat satellite imagery collected between 1984–2011. We characterized greening trends at each range limit, examined variability in EVI along latitudinal gradients near each range limit, and assessed correlations between changes in EVI and temperature and precipitation.

    Results

    Spatial variability in mean EVI was generally correlated with temperature and precipitation, but the relationships were region specific. Greening trends were most pronounced at range limits in eastern North America. In these regions variability in EVI increased toward the range limit and was sensitive to climatic factors. In contrast, EVI at range limits on the Pacific coast of North America and both coasts of South America was relatively stable and less sensitive to climatic variability.

    Main conclusions

    Our results suggest that range limits in eastern North America are strongly controlled by climate factors. Mangrove expansion in response to future warming is expected to be rapid in regions that are highly sensitive to climate variability (e.g. eastern North America), but the response in other range limits (e.g. South America) is likely to be more complex and modulated by additional factors such as dispersal limitation, habitat constraints, and/or changing climatic means rather than just extremes.

     
    more » « less
  3. Abstract Aim

    Patterns of genetic diversity within species’ ranges can reveal important insights into effects of past climate on species’ biogeography and current population dynamics. While numerous biogeographic hypotheses have been proposed to explain patterns of genetic diversity within species’ ranges, formal comparisons and rigorous statistical tests of these hypotheses remain rare. Here, we compared seven hypotheses for their abilities to describe the geographic pattern of two metrics of genetic diversity in balsam poplar (Populus balsamifera), a northern North American tree species.

    Location

    North America.

    Taxon

    Balsam poplar (Populus balsamiferaL.).

    Methods

    We compared seven hypotheses, representing effects of past climate and current range position, for their ability to describe the geographic pattern of expected heterozygosity and per cent polymorphic loci across 85 populations of balsam poplar. We tested each hypothesis using spatial and non‐spatial least‐squares regression to assess the importance of spatial autocorrelation on model performance.

    Results

    We found that both expected heterozygosity and per cent polymorphic loci could best be explained by the current range position and genetic structure of populations within the contemporary range. Genetic diversity showed a clear gradient of being highest near the geographic and climatic range centre and lowest near range edges. Hypotheses accounting for the effects of past climate (e.g. past climatic suitability, distance from the southern edge), in contrast, had comparatively little support. Model ranks were similar among spatial and non‐spatial models, but residuals of all non‐spatial models were significantly autocorrelated, violating the assumption of independence in least‐squares regression.

    Main conclusions

    Our work adds strong support for the “Central‐Periphery Hypothesis” as providing a predictive framework for understanding the forces structuring genetic diversity across species’ ranges, and illustrates the value of applying a robust comparative model selection framework and accounting for spatial autocorrelation when comparing biogeographic models of genetic diversity.

     
    more » « less
  4. Abstract

    Shifts in species geographic distributions in response to climate change have spurred numerous studies to determine which abiotic (e.g. climatic) and, less commonly, biotic (e.g. competitive) processes determine range limits. However, the impact of disturbances on range limits and their interactions with climatic and biotic effects is not well understood, despite their potential to alter competitive relationships between species or override climatic effects. Disturbance might have differential effects at contrasting range limits, based on Darwin's theory that biotic interactions set abiotically benign range limits and abiotic factors set abiotically stressful range limits.

    We predicted that plants at lower elevation (abiotically benign) range limits experience a net positive effect of disturbance, whereas those at higher elevation (abiotically stressful) range limits experience a net neutral effect. We examined plant populations along elevational gradients in the Colorado Rocky Mountains, in order to quantify the effects of human trampling disturbance at lower and upper elevational range limits of the common alpine cushion plantsSilene acaulisandMinuartia obtusiloba.

    Our results are consistent with Darwin's theory. A disturbance‐mediated reduction of competitive effects increases the performance of cushion plants at lower elevations, suggesting a range limit set by biotic factors. At higher elevations, where biotic interactions are minimal, disturbance has neutral or negative effects on cushion plants.

    Synthesis and applications. Human trampling disturbance exerts differential effects on alpine cushion plant populations at contrasting range limits, emphasizing the need to account for the effects of climate change into the management and conservation of disturbed areas. Disturbance can diminish plant–plant competitive interactions at lower elevational range limits, and thus possibly stabilize alpine species populations susceptible to climate change‐mediated encroachment by lower elevation species. Conservation and management approaches should therefore particularly account for the differential effects of disturbance across climatic gradients.

     
    more » « less
  5. Abstract

    Poleward and uphill range shifts are a common—but variable—response to climate change. We lack understanding regarding this interspecific variation; for example, functional traits show weak or mixed ability to predict range shifts.

    Characteristics of species' ranges may enhance prediction of range shifts. However, the explanatory power of many range characteristics—especially within‐range abundance patterns—remains untested.

    Here, we introduce a hypothesis framework for predicting range‐limit population trends and range shifts from the internal structure of the geographic range, specifically range edge hardness, defined as abundance within range edges relative to the whole range. The inertia hypothesis predicts that high edge abundance facilitates expansions along the leading range edge but creates inertia (either more individuals must disperse or perish) at the trailing range edge such that the trailing edge recedes slowly. In contrast, the limitation hypothesis suggests that hard range edges are the signature of strong limits (e.g. biotic interactions) that force faster contraction of the trailing edge but block expansions at the leading edge of the range.

    Using a long‐term avian monitoring dataset from northern Minnesota, USA, we estimated population trends for 35 trailing‐edge species and 18 leading‐edge species and modelled their population trends as a function of range edge hardness derived from eBird data. We found limited evidence of associations between range edge hardness and range‐limit population trends. Trailing‐edge species with harder range edges were slightly more likely to be declining, demonstrating weak support for the limitation hypothesis. In contrast, leading‐edge species with harder range edges were slightly more likely to be increasing, demonstrating weak support for the inertia hypothesis.

    These opposing results for the leading and trailing range edges might suggest that different mechanisms underpin range expansions and contractions, respectively. As data and state‐of‐the‐art modelling efforts continue to proliferate, we will be ever better equipped to map abundance patterns within species' ranges, offering opportunities to anticipate range shifts through the lens of the geographic range.

     
    more » « less