Ammonia is considered a basic building block for fertilizers. Also, it is an economically efficient and technologically suitable solution for energy storage and transportation. Non-thermal plasma-driven catalysis powered by renewable energy is considered as a green alternative to the conventional Haber-Bosch process for ammonia synthesis. The main challenge in this electron-mediated route is the low ammonia synthesis production, given the plasma-induced decomposition of the freshly generated ammonia during the reaction. Herein we report the plasma-assisted ammonia synthesis in a dielectric barrier discharge reactor packed with CC3 crystals, a prototypical porous organic cage, and a molecular-sieve membrane fabricated from the same CC3 material. The CC3 crystals delivered the highest ammonia synthesis rate (0.06 μmol min−1 m−2) compared to other microporous catalysts such as zeolite (SAPO-34) and metal-organic frameworks (ZIF-8, ZIF-67) (below 0.02 μmol min−1 m−2). The CC3 porous cage with well-defined octahedral crystal geometry provides partial protection while the CC3 membrane offers both adsorption and separation effects for the freshly formed ammonia from its in-situ decomposition, securing an excellent ammonia synthesis rate of 20.3 μmol min−1 m−2. The findings from this work unfolds novel insights into rational designs of advanced porous catalyst and membrane for plasma-driven catalytic ammonia synthesis in a sustainable and efficient way.
more »
« less
Tuning Material Properties of Porous Organic Cage CC3 with Postsynthetic Dynamic Covalent Chemistry
Abstract Porous organic cages (POCs) represent a new class of microporous materials with an impressive breadth of potential applications. One of their many advantages is the degree of tunability of cage properties, similar to that seen in more established microporous materials like metal‐organic frameworks. In this work, a prototypical POC, CC3, is used to explore the potential to tune cage properties via post‐synthetic dynamic covalent chemistry. Ethylenediamine, the linker used in another POC, CC1, was partially substituted into the CC3 cage structure to varying degrees based on the starting relative molar ratios. The resulting products were investigated for the relative distribution of the two linkers, crystallinity, and surface area. It was found that even when small amounts of other compatible diamine linkers are introduced, they substitute into the existing cages, although some structural products are apparently favored over others within the reactant ratios investigated.
more »
« less
- Award ID(s):
- 1653153
- PAR ID:
- 10364399
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- European Journal of Organic Chemistry
- Volume:
- 2022
- Issue:
- 2
- ISSN:
- 1434-193X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Crystalline porous frameworks, such as covalent organic frameworks (COFs), metal–organic frameworks (MOFs), and hydrogen-bonded organic frameworks (HOFs), have demonstrated exceptional potential in diverse applications, including gas adsorption/separation, catalysis, sensing, electronic devices, etc. However, the building blocks for constructing ordered frameworks are typically limited to multisubstituted aromatic small molecules, and uncontrolled interpenetration has remained a long-standing challenge in the field. Shape-persistent macrocycles and molecular cages have garnered significant attention in supramolecular chemistry and materials science due to their unique structures and novel properties. Using such preporous shape-persistent 2D macrocycles or 3D cages as building blocks to construct extended networks is particularly appealing. This macrocycle-to-framework/cage-to-framework hierarchical assembly approach not only mitigates the issue of interpenetration but also enables the integration of diverse properties in an emergent fashion. Since our demonstration of the first organic cage framework (OCF) in 2011 and the first macrocycle-based ionic COFs (ICOFs) in 2015, substantial advancements have been made over the past decade. In this Account, we will summarize our contributions to the development of crystalline porous frameworks, consisting of shape-persistent macrocycles and molecular cages as preporous building blocks, via hierarchical dynamic covalent assembly. We will begin by reviewing representative design strategies and the synthesis of shape-persistent macrocycles and molecular cages from small molecule-based primary building blocks, emphasizing the critical role of dynamic covalent chemistry (DCvC). Next, we will discuss the further assembly of preporous macrocycle/cage-based secondary building blocks into extended frameworks, followed by an overview of their properties and applications. Finally, we will highlight the current challenges and future directions for this hierarchical assembly approach in the synthesis of crystalline porous frameworks. This Account offers valuable insights into the design and synthesis of functional porous frameworks, contributing to the advancement of this important field.more » « less
-
Membrane-based separations offer the potential for the lowest energy demand requirements of all separation options. Among all nanoporous membranes, the carbon molecular sieves (CMS), metal-organic frameworks (MOFs), and mixed-matrix membranes (MMMs) with angstrom level molecular discrimination properties makes them appealing for separating a wide spectrum of gas-pairs. Here we present results of gas selectivity and diffusion of different gases (C2H6, C2H4, C3H8, C3H6, H2, N2, CO2, and CH4) in porous organic cages (POCs) incorporated into fluorinated copolyimides polymers (FCPs). The FCPs were synthesized by the iridization reaction of fluorinated dianhydrides, nonfluorinated dianhydride, and nonfluorinated diamine. Asymmetric hollow fiber membranes formed by the dry-jet/wet-quench spinning process. Once fresh FCP fibers were synthesized, they were crosslinked with POCs, vacuum dried at 90 °C. We investigated the uptake, gas selectivity and diffusion of different gases (C2H6, C2H4, C3H8, C3H6, H2, N2, CO2, and CH4) over synthesized POC-mixed matrixed membranes (POC-MMM) at 25 °C and pressures up to 1 bar. At 1 bar and 25 °C, C2H6, C2H4, C3H8, C3H6 adsorption capacities reached to 42.61, 2.56, 2.77 and 2.65 mmol/g over POC-MMM, respectively, while CO2, CH4, CO, N2 and H2 adsorption capacities of 1.48, 0.84, 0.33, 0.11, and 0.068 mmol/g, respectively. Furthermore, stable CMS membrane were formed by pyrolysis of POC-MMMs under an inert argon atmosphere at 1 atm. To test the gas transport properties of CMS-derived POC/MMM, a lab-scale hollow fiber module with two-five fibers was constructed. The results of longer-term operation of synthesized CMS membrane that was continuously operated for 264 h (10 days) with an equimolar binary H2/CO2, CH4/CO2 and C3H6/C3H8 feed at 25°C and 1 bar feed pressure. The modification yielded promising results in the reduction of physical aging of CMS membranes.more » « less
-
The guest‐free, type‐II Si clathrate (Si136) is an open cage polymorph of Si with structural features amenable to electrochemical Li storage. However, the detailed mechanism for reversible Li insertion and migration within the vacant cages of Si136is not established. Herein, X‐ray characterization and density functional theory (DFT) calculations are used to understand the structural origin of electrochemical Li insertion into the type‐II clathrate structure. At low Li content, instead of alloying with Si, topotactic Li insertion into the empty cages occurs at ≈0.3 V versus Li/Li+with a capacity of ≈231 mAh g−1(corresponding to composition Li32Si136). A synchrotron powder X‐ray diffraction analysis of electrodes after lithiation shows evidence of Li occupation within the Si20and Si28cages and a volume expansion of 0.22%, which is corroborated by DFT calculations. Nudged elastic band calculations suggest a low barrier (0.2 eV) for Li migration through interconnected Si28cages, whereas there is a higher barrier for Li migration into Si20cages (2.0 eV). However, if Li is present in a neighboring cage, a cooperative migration pathway with a barrier of 0.65 eV is possible. The results show that the type‐II Si clathrate displays unique electrochemical properties for potential applications as Li‐ion battery anodes.more » « less
-
Here we present results of gas selectivity and diffusion of different gases (C2H6, C2H4, C3H8, C3H6, H2, N2, CO2, and CH4) in porous organic cages (POCs) incorporated into fluorinated copolyimides polymers (FCPs). The FCPs were synthesized by the thermal and chemical imidization reaction of fluorinated dianhydrides, nonfluorinated dianhydride, and nonfluorinated diamine. Asymmetric hollow fiber membranes formed by the dry-jet/wet-quench spinning process. Once fresh FCP fibers were synthesized, they were crosslinked with POCs, vacuum dried at 90 °C. We investigated the uptake, gas selectivity and diffusion of different gases (C3H8, C3H6, CO2, and H2) over synthesized POC-mixed matrixed membranes (POC-MMM) at 25 °C and pressures up to 1 bar. At 1 bar and 25 °C, C3H8, C3H6 adsorption capacities reached 2.77 and 2.65 mmol/g over POC-MMM, respectively, while CO2, CH4, CO, N2 and H2 adsorption capacities of 1.48, 0.84, 0.33, 0.11, and 0.068 mmol/g, respectively. Furthermore, stable CMS membrane was formed by pyrolysis of POC-MMMs under an inert argon atmosphere at 1 atm. To test the gas transport properties of CMS-derived POC/MMM, a lab-scale hollow fiber module with two-five fibers was constructed. The results of longer-term operation of synthesized CMS membrane that was continuously operated for 264 h (10 days) with an equimolar binary H2/CO2, CH4/CO2 and C3H6/C3H8 feed at 25°C and 1 bar feed pressure. The modification yielded promising results in the reduction of physical aging of CMS membranes.more » « less
An official website of the United States government
